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Chapter Six 

 

Modeling the Magnetization Process 

 

 

6.1  Overview 
 

Chapter 4 presents the magnetic properties of b-axis-oriented Dy, obtained by SQUID 

magnetometry.  Chapter 5 provides an interpretation of these results, with calculations that 

support the measured magnetic phase diagrams.  It establishes that the magnetoelastic 

Hamiltonian and magnetic domains both play important roles in the magnetization 

process; however, the clear separation of these two effects is not always easy.  The research 

described in this chapter is an attempt to understand the contribution individual terms of 

the magnetoelastic Hamiltonian make to the ferromagnetic properties of b-axis-oriented 

Dy.  Specifically, two calculations have been developed, the first a thermal equilibrium 

model and the second a model with thermal activation, to study magnetization in an 

applied field.  These calculations provide significant insight into the physical origins of the 

magnetic ordering, including anisotropy, coercivity, and the wasp-waisted hysteresis 

loops. 

 This Chapter is organized in the following way.  First, a brief review of 

contemporary magnetization calculations is given, with summaries of several early 

models, to place the present work in context and to identify the origins of the models 

presented in this Chapter.  An overview of the magnetic energy landscapes then follows, 

so that such important features as appearance and disappearance of states are clearly 

identified.  A thermal equilibrium model is described, along with a summary of results 

which identify the inadequacies of this model.  The model which includes thermal 
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activation is presented next, followed by detailed results concerning domain wall pinning, 

temperature, and applied field.  The conclusions of this research are presented at the end. 

 

6.2  Brief Review of Magnetization Models 
 

There are a large number of approaches to calculating magnetization, but most fall into 

two general categories: micromagnetic models, which self-consistantly determine the 

distribution of moments in a body [1],[2]; and Néel-Brown-type models, which calculate the 

time-dependence of magnetization using thermally-activated processes [3],[4].  The bulk of 

modern research concerns these two models.  In addition, however, there are models based 

on specific integral or differential equations (such as the Preisach model, not discussed 

here [5],[6]), which tend to be of limited applicability; and Stoner-Wohlfarth models, which 

have enjoyed some success in qualitative predictions of hysteresis loop shapes [7].  The 

two models developed in this research are examples of Néel-Brown-type models which 

are applied to qualitatively modeling hysteresis loop shapes. 

 

Micromagnetic Models 
 

Micromagnetic modeling, which concerns the calculation of moments and domain 

behavior in an applied magnetic field, is a rapidly growing field.  The equations governing 

the behavior of moments and magnetic domains were recognized as early as 1935 by 

Landau and Lifshitz [8], but recent technological interest in ultrasmall magnetic systems, 

together with advances in computational physics, has promoted a rapid development of 

detailed micromagnetic calculations of domain wall motion and hysteresis in an applied 

magnetic field. 

 The starting point for many current models of magnetization and domain growth is 

the Landau-Lifshitz-Gilbert (LLG) equation [1], 

 ∂
∂
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where γ G  and α G  are the Gilbert gyromagnetic and damping constants which describe 

the precession of moments in a time-varying field [2].  In fact, this is a phenomenological 

equation with a damping term that has not been derived from basic principles.  Although 

not obvious, this can be re-written (e.g., Ref. [9]) in the small-damping limit as the 

magnetostatic Brown’s equation 

 m m H
m

× ∇ + −

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=C M
w
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∂
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 (6.2) 

where wa  is an anisotropy energy density.  Although mathematically complex, the 

essential physics expressed by Eq. (6.2) is that in equilibrium the torque everywhere is 

zero and the magnetization is parallel to an effective field, 
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 (6.3) 

 The spatial distribution of magnetization can be determined self-consistantly using 

these equations, although sophisticated computational evaluation is required.  

Micromagnetic models have met with some success in systems for which magnetic domain 

structure has been measured.  However,  these are continuum models and, as such, they 

may not be applicable in highly anisotropic systems with very small domain walls. 

 

Stoner-Wohlfarth Models 
 

The best-known approach to modeling the magnetization of a single-domain ferromagnetic 

particle in an applied magnetic field is the Stoner-Wohlfarth model, developed in 1948 [7].  

This model is based on the following ideas.  The exchange energy of the moments in the 

domain is assumed to be strong enough to maintain the moments in a parallel 

configuration.  The magnetic energy in an applied field is then calculated using shape and 

magnetocrystalline anisotropy, and Zeeman coupling to the field.  As the field changes, the 

magnetization state follows the history-dependent local minimum, and hysteresis occurs 

because the energy expressions are multivalued.  This simple model has met with 

considerable success, particularly in qualitatively predicting hysteresis in systems with 
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strong anisotropy.  Recently, a SW model been developed by Huth and Flynn to study 

transition-metal rare-earth thin films [10]. 

 A limitation of the Stoner-Wohlfarth model is that it follows the local energy 

minimum as the magnetic field changes, and it therefore ignores dissipation and thermal 

fluctuations between states of lowest energy.  These temperature-dependent effects were 

first introduced by Néel and further developed by Brown, who assumed a thermal 

distribution of moments which could make transitions between states [11]. This led to a 

Fokker-Planck description of the probability density of orientations [12].  In the original 

work, this model was applied primarily provide a theoretical foundation for transition 

rates, but related Néel-Brown-type models (not necessarily involving Fokker-Planck 

equations) have since been applied to treat many magnetic phenomena, most notably time-

dependent effects such as magnetic viscosity [13]. 

 

Present Research 
 

This Chapter presents two models of the way the Hamiltonian enters into the 

magnetization process.  They are essentially Néel-Brown-type models which involve 

thermal activation, but these are used to qualitatively understand hysteresis loop shapes.  

The first, which is termed here the thermal equilibrium model, is oversimplified but it 

nevertheless provides a useful description of the modeling procedure and clearly 

identifies specific physical characteristics to be improved.  The second model, called the 

thermal activation model, was developed specifically to overcome the limitations of the 

thermal equilibrium model.  The magnetic energy landscapes are first introduced, and 

then the models and the results of these calculations are described. 

 

6.3  Energy Landscapes 
 

A simplified model of the magnetization process requires that the stable states for a rare 

earth moment and their evolution in an applied field be calculated.  These “energy 

landscapes” are to be described by the Hamiltonian presented in Chapter 1, which is the 
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sum of magnetocrystalline, magnetoelastic, and shape anisotropies, and Zeeman coupling 

to the applied field, 

 H H H H HME= + + +CF S Z  (6.4) 

Some important assumptions made throughout this Chapter are first documented. 

 Uniaxial anisotropy.  Since uniaxial anisotropy is strong (K K2 6
6>> ) for Dy, in what 

follows all moments are assumed locked to the basal plane; only the φ -dependence of the 

interactions is included, with θ π= / 2 .  For Dy this means that applied field will be 

assumed to lie in the basal plane.  This is valid for xy-model rare earths such as Dy, Tb, 

and Ho, in which strong magnetocrystalline anisotropy restricts the moments to lie in the 

plane.  For rare earths which order in three dimensions, such as Er, the energy landscapes 

are more complicated and it is not yet clear if these models can provide an accurate 

description of ordering. 

 No exchange coupling.  The system is assumed ferromagnetic.  The magnetoelastic 

Hamiltonian (Eq. (6.4)) does not include the exchange interaction which, for a single 

ferromagnetic domain, appears as a constant energy offset. This necessarily excludes rare 

earths such as Er, in which the ferromagnetic state involves exchange coupling. 

 Crystal lattice and strain. The crystal lattice is assumed constrained by chosen 

epitaxial strain and clamping.  The system is always ferromagnetic, and the lattice 

parameters are fixed.  Therefore the purely elastic interaction HE is ignored.  The 

possibility of magnetostriction from the growth and coalescence of ferromagnetic domains 

is not considered.  Experimental measurements of this possible effect, now in progress by 

C. Durfee, will be welcome. 

 No interdomain effects.  In real systems dipole coupling between domains is 

important, but this can be handled adequately only in a micromagnetic (i.e., LLG) 

framework. 

 

Energy Landscapes 
 

Based on the magnetoelastic Hamiltonian, the free energy depends on the direction of the 

moments and the strength and direction of the applied field.  The “energy landscapes” 
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presented in Chapter 5 showed that magnetoelastic coupling and shape anisotropy 

generate a unidirectional in-plane easy axis for stretched Dy and, similarly, two out-of-

plane easy axes for compressed Dy. 

 Now the evolution of these energy landscapes with applied field is considered.  An 

example which highlights important features is presented.  First, the free energy for 

clamped, unstrained Dy is shown in Figures 6.1, for the field applied along the in-plane a-

axis.  At zero applied field there a number of energy minima (which occur at polar angles 

φ i ).  These are separated by energy barriers so that,  for a moment located in these states, 

additional energy is required for rotation into a different direction.  As the magnetic field 

changes, the location and energy of the states φ i  both change.  This is a consequence of the 

Zeeman interaction which tends favors parallel alignment of the moments with the field.  A 

second feature is that states may spontaneously appear or disappear, due to compensation 

of magnetic anisotropy by Zeeman coupling.  Eventually, in strong enough fields, the 

Zeeman coupling overcompensates the intrinsic six-fold anisotropy and this eventually 

forces a disappearance of all non-parallel states. 

 The location of the stable states is easily determined.  They are located by angles 

which minimize the free energy of Eq. (6.4), computed via the equilibrium condition 

 
df
d

i
φ φ

= 0  (6.5) 

This is a transcendental equation but it is readily solved using a computational approach.  

The location of the stable states under an applied field is presented as Figure 6.2, for 

clamped, unstrained Dy. 

 The energy of these states is now addressed, with a view to their probability of 

occupation.  For specified epitaxial strain and clamping, the state locations φi H( )  are first 

calculated by Eq. (6.5), and these are then used to determine the energies, E f Hi i= ( , )φ .  

The field-dependence of the energy of each state is presented in Figure 6.3.  The energy of 

states parallel to or closely-aligned with the applied magnetic field decreases with 

increasing field, as expected.  The state for φ πi =  (or more generally, states aligned against 
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the field direction) is clearly unfavored, as shown by an increasing free energy for this 

direction. 
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Figure 6.1:  The free energy of a magnetic moment in clamped, unstrained Dy.  The hexagonal 
symmetry is broken by shape anisotropy.  The equilibrium locations are indicated. 
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Figure 6.2.  The evolution of stable states (free energy minima) as the applied magnetic field is 
increased.  States may appear and disappear, but eventually (~8 T) the applied field forces 
alignment. 
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 In summary the magnetoelastic Hamiltonian has well-defined energy states.  As the 

applied magnetic field is increased the energy landscape evolves and hence the number of 

stable states, their location φ i  and their free energy E f Hi i= ( , )φ  also evolves.  It is natural 

to inquire whether a probability of occupation can be associated with each state, and how 

transitions between these states can occur as the applied field is changed.  The simplest 

model of this process is presented next. 

 

 

Figure 6.3.  The free energy of the stable states in compressed Dy.  The states along the field 
direction decrease in energy with increasing field, as expected. 

 

6.4  Thermal Equilibrium Model 
 

The simplest model of the magnetization process, governed entirely by the magnetoelastic 

Hamiltonian, assumes that the collection of states is occupied in thermodynamic 

equilibrium for all applied fields.  Specifically, the magnetization profile is obtained by 

assuming each equilibrium state φ i  of energy Ei  contains a population of moments Pi  

which is proportional to the Maxwell-Boltzmann factor, 

 P E k T Zi i B= −exp( / ) /  (6.6) 

where the partition function 
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 Z E k T
i

i B= −∑ exp( / )  (6.7) 

ensures proper normalization of states.   Interestingly, this is identical to the problem of 

quadrupolar defect orientations in an elastic stress field, discussed by Flynn [14].  Strictly, 

the Gibb’s free energy (G=E-TS) must appear in the numerator of Eq. (6.7).  Since the 

present system contains only a small number of states (at most, 6), the entropic 

contribution to the free energy  is ignored. 

 The net magnetization described by this model is then the projection of the 

moments in the field direction, 

 

M

m E k T Z

i
i

i B i
i

= ⋅

= − −

∑
∑

m H H/

exp( / )cos( ) /φ φ0

 (6.8) 

where each moment has magnetic dipole strength m, and the angles φ i  are defined with 

respect to the applied field direction, φ0 . 

 Finally, the modeling procedure can be written as the following sequence of steps, 

also shown in Figure 6.4: 

1.  Select the initial magnetic field H. 

2.  Compute the quantities φi i iH E H P H( ), ( ), ( ) . 

3.  Use these quantities to compute the net magnetization M. 

4.  Change the magnetic field to H+∆H and repeat this process. 

 

 
Figure 6.4.  Flowchart of the thermal equilibrium model of magnetization. 
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Results and Inadequacies 
 

The result of this model are magnetization curves, M(H), shown as Figure 6.5. Only the 

data for positive fields are shown, but these are equivalent to magnetization for negative 

fields ( M(H)=-M(-H) ) by symmetry.  There are two important aspects of these 

magnetization profiles.  1) Hysteresis.  The system is always in equilibrium, so that 

hysteresis, coercive fields and remanent magnetization are not observed  (i.e., there is no 

“history” in the magnetization process).  Real magnetization curves show significant 

hysteretic effects, so this is a shortcoming of this model.  2) Abrupt kinks.  As new states 

appear or disappear, these induce a significant repopulation of existing states, in 

accordance with the overall partition function normalization.  In general real magnetization 

data do not show such distinct changes in the slope of M(H). 

 A similar model which involves thermal activation across the energy barriers 

has been developed to overcome these deficiencies, and this is discussed next. 
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Figure 6.5.  Magnetization curves calculated using the thermal equilibrium model, for unstrained 
(U), tensile (T), and compressively (C) strained b-axis-oriented Dy.  Notice the unphysical, abrupt 
reduction or increase in magnetic moment, associated with the spontaneous disappearance or 
appearance of states.  Since these states have free energies comparable with those of existing or 
persisting states, the sudden, non-negligible population of these states has a large effect on the net 
magnetization. 
 



 

 166

6.5  Thermal Activation Model 
 

The thermal equilibrium model is a first step towards simulation of the magnetic ordering 

process using the magnetoelastic Hamiltonian, but this model had several unphysical 

difficulties.  A model that includes thermal activation was developed to study path-

dependent behavior.  This Section is organized in the following way.  First, the basic 

concepts of transition state theory are reviewed.  This establishes the ideas of thermal 

activation with some rigor.  Next, the thermal activation model is described so that the way 

deficiencies of the thermal equilibrium model are overcome is made clear.  Subsequently, 

the model is applied to closely examine some experimental results, already presented in 

Chapter 4.  The subsequent Sections apply the model to qualitatively examine some of the 

features of the hysteresis loops presented in Chapter 4.  The emphasis is on what 

adjustments are needed (if any) to obtain agreement with experiment.  Finally, the 

conclusions are summarized. 

 

Transition State Theory 
 

 

Obtaining the equations of motion for particles confined to an energy landscape (reaction 

coordinate) has been studied by Van’t Hoff, Arrhenius, Kramers and others since 1880.  

The general problem is known reaction-rate theory, and recently an authoritative review 

[15] was given by Hänngi et al.  This Section presents the essential ideas, to place the 

thermal activation model into proper perspective and to show how extension or 

generalization of this model may be possible. 

 The “particles” (in the present case, a collection of coherent magnetic moments) are 

confined to the energy surface shown in Figure 6.6.  There are metastables states at A and 

C, separated by energy barriers EB
± , and escape from these occurs via forward and 

backward rates, k± .  If the system is assumed to be in contact with a heat reservoir, then 

quantities such as dissipation and entropy may be rigorously included  (in the present 

model, these are ignored). The scope of reaction-rate theories are extremely broad, and 

they encompass classical motion, tunneling between states, and admixtures of these 
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processes.  An important class of reaction-rate theories, known as transition state theories 

(TST), concerns the passage of particles through a transition state without return [15]. 

Before describing the thermal activation model, two central TST results will be given.  

These concern the separation of time scales, and the Master equation which governs the 

time-evolution of the occupation probabilities. 

 

 
Figure 6.6.  A potential U(x) with two metastable states, to illustrate the transition-state theory. 
 

 Separation of time scales.  As discussed in Ref. [15], the time scale of escape of a 

particle across a barrier depends on the size of the thermal fluctuations (with energy 

E k Tnoise B= ), and transitions will be infrequent when 

 
E

E
noise

b
± << 1  (6.9) 

According to TST, the time scale which describes motion within the state is related to the 

curvature of the energy surface U, 

 τ s M d U x a
dx

~ ( )/
/

1 2
2

2

1 2
=











−

 (6.10) 

where M is the mass of the particle.  Thus, the escape time is well-separated from this 

when 

 τ τ τe s b noise sE E~ exp( / )± >>  (6.11) 



 

 168

This condition is fulfilled in the present thermal activation model; that is, the model 

concerns the response of the magnetization to a slowly changing applied field, not the 

time-dependence of magnetization at short times; magnetic attempt frequences are 

typically 10 109 10−  sec-1 [13].  The time coordinate is then an effective variable to generate 

hysteresis, rather than for rigorous calculation of time-dependent magnetization 

measurements. 

 Master equation.  In the thermal equilibrium model it is assumed that moments are 

free to occupy new states as the energy landscape evolves, ignoring energy barriers which 

separate states.  For slow changes of magnetic field, one can consider instead a model in 

which the population of any state φ i  may be decreased or increased by transitions to or 

from adjacent states φi±1 .  In such cases, the Master equation provides a well-developed 

prescription for studying the approach of such a system to equilibrium [16]. 

 The probability Pr  that a state will be occupied depends on the probability π rs  that 

moments can rotate into other states, as well as the probability that moments can rotate 

into this state from other states, π sr .  The time dependence of Pr  is then described by the 

“master equation” [16], 

 dP
dt

P Pr
s sr

s
r rs

s

= −∑ ∑π π  (6.12) 

Since time enters this equation linearly in the first derivative, the master equation does not 

remain invariant as the sign is reversed from t  to −t .  In this way, this equation describes 

the irreversible behavior of the system [16]. 

 

The Thermal Activation Model 
 

The approach taken in this Section is to solve Eq. (6.12) numerically.  Since the model 

describes the rotation of moments, only transitions between adjacent states will be 

allowed.  The transition probabilities must be specified.  Surrounding a state φ i  there are 

energy barriers Bi i, +1  and Bi i, −1  between the adjacent states φi+1  and φi−1 , respectively 
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[17].  Let the probability for a moment to rotate into an adjacent state depend on thermal 

activation across the separating energy barrier, so that 

 π i i i i BB k T Z, ,exp( / ) /± ±= −1 1  (6.13) 

 Since the master equation is a system of coupled first order ordinary differential 

equations, Euler’s method may be used for a numerical solution [18].  This is a step-wise 

solution which involves rewriting Eq. (6.12) as the difference expression 

 ( )P P P P P Pi i i i i i i i i i i i i i
( ( ) ( )

,
( )

,
( )

,
( )

,
1) 0 0

1
0

1 1
0

1 1
0

1= + + − −+ − + + − −π π π π  (6.14) 

This must be applied in succession to all states, and periodic boundary conditions are 

used since the process describes rotation.  In the limit of Pi
N( )  with large N, equilibrium is 

obtained.  The thermal activation model is concerned with a qualitative interpretation of 

hysteretic effects, however, not the equilibrium solution and (more importantly) not with 

rigorous time-dependent results.  Thus N is used as an adjustable parameter of the model, 

in order to vary the extent of magnetic hysteresis. 

 This model is unlike the thermal equilibrium model, in which the probability of 

occupation of a state could be computed at any time, without regard to the previous 

occupation of that state.  In the present model, the occupation of a state  now depends on 

the history of that state as well as the history of adjacent states, and magnetic hysteresis is 

therefore an intrinsic property of this model. 

 Initial conditions.  Since hysteresis is important, the initial conditions must be 

appropriately specified.  In the calculation of a full hysteresis loop, it is sufficient to begin 

the loop at an applied field which saturates magnetization (H H= sat ).  Hysteresis will 

develop naturally as the applied field is swept.  The initial conditions for the calculation of 

an initial magnetization curve are less clear.  In the real system, the magnetization after 

zero-field cooling is negligible, because a domain structure establishes to minimizes 

internal energy (dipole, demagnetization, etc.).  In the model, the system is preconfigured 

using a Maxwell-Boltzmann distribution and, because of π-rotational symmetry, there is 

no initial magnetization at zero field.  This is not a shortcoming, however.  The intent of the 
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model is to gain semi-quantitative intuition into the magnetization behavior which would 

result if the system were purely governed by the magnetoelastic Hamiltonian, thus the 

initial conditions can therefore be adjusted as necessary. 

 Activation volume.  For magnetic systems the attempt frequency ν is known to be 

10 109 10−  s, so that the energy contribution of thermal activation to overcoming energy 

barriers is E k T tth B= log( )ν  [13].  The Zeeman energy HZ and other energies are extremely 

large in comparison.  This “problem” has long been recognized [19], and it is a universal 

feature of thermally-activated models of magnetization [20].  Related problems exist, for 

example, in the Stoner-Wohlfarth model [10], and in models of vortex excitations in 

superconductors [21].  The idea is that the energy scale is relevant to the volume in which 

the magnetization behaves coherently (called the activation volume, and defined by the 

magnetic coherence length) rather than the atomic volume of a single moment.  In terms of 

Eq. (6.12), the eigenvalues and eigenstates of the interacting system must be obtainied and 

there is no a priori knowledge on which length scales the moments are correlated for any 

given eigenstate. 

 Different defintions of the activation volume have been used, and some recent work 

has tried to connect the results of modeling with experimental measurements of this 

quantity [22].  The present research focuses on the qualitative shapes of hysteresis loops, 

not the exact time dependence of magnetization.  Thus the energies per unit cell of Dy are 

employed, and the temperature is used as an effective variable. 

 Finally, the modeling procedure can be written as the following sequence of steps, 

also shown in Figure 6.7: 

1.  Select the initial magnetic field H. 

2a.  Specify/compute the quantities φ i i iH E H P H( ), ( ), ( )( )0 . 

2b.  Calculate the new occupancies Pi
(1) . 

2c.  Repeat the occupancy calculation through to Pi
j( ) , where j N<  represents the 

desired effective magnetic relaxation time 
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3.  Use these quantities to compute the net magnetization M. 

4.  Change the magnetic field to H+∆H and repeat this process. 

The remainder of this Chapter discusses results of this model. 

 

 

 
Figure 6.7.  Flowchart of the thermal activation model. 
 

Magnetization of Previously-Unmagnetized Samples 
 

The calculated initial magnetization of compressed and stretched b-axis-oriented Dy are 

shown in Figure 6.8 which also contains, for convenience, the experimental result from 

Chapter 4.  An interesting feature is that the calculated curve for compressed Dy shows an 

abrupt kink.  Good agreement between calculated and observed kinks can be obtained 

simply by a slight reduction of the magnetoelastic constant from λ2 = -0.0097 to λ2 =-0.007.  

There is considerable spread in the measured (bulk) values of these coefficients and the 

coefficients for a thin film are likely to differ significantly from these, so is not a 

shortcoming.  It is interesting that reasonable agreement can be obtained with a small 

readjustment of a single parameter. 

 The case of tensile strain is less encouraging.  The data show a continuous and 

smooth approach to saturation, whereas the model predicts a negligible magnetization 

until a large switching field is encountered, at which point the magnetization abruptly 

saturates.  This is not a failure of the thermal activation model; rather, it provides insight 

not readily available with other means.  First, Chapter 4 showed that samples with tensile 
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strain are spontaneously ferromagnetic, with an easy axis parallel to the in-plane a-axis.  

The calculation appropriately reflects this easy axis by the sudden jump to saturation.  

Second, since the energy barriers are large, the calculation suggests an additional 

mechanism, one not included in the magnetoelastic Hamiltonian, reduces the large 

coercive field and permits domain growth in small applied fields.  It is long known that 

edge domains in thin films cancel demagnetizing fields and that growth of these domains 

plays an important role in the initial magnetization [23].  The thermal activation model 

suggests the greater importance of these effects in films with tensile strain.  This point will 

be further discussed below. 
 

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0 ε11 = -2.2%
DATA

M
 / 

M
S

Applied Field  ( kOe )

 

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0 ε
11

 = +1.18%
DATA

M
 / 

M
S

Applied Field  ( kOe )

 

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0 ε11 = -2.2%
CALCULATION

M
 / 

M
S

Applied Field  ( kOe )

 

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0 ε
11

 = +1.18%
CALCULATION

M
 / 

M
S

Applied Field  ( kOe )

 
Figure 6.8.  Measured (top) and calculated (bottom) initial magnetization curves for compressed (left) and 
stretched (right) Dy. For compressed Dy, the changes in slope at about 20 kOe and 40 kOe are reasonably 
well predicted by the calculation. For stretched Dy, there is reasonable agreement with the change in slope 
in 60 kOe, but the calculation clearly lacks a mechanism for spontaneous magnetization at low fields. 
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Hysteresis Loops 
 

Hysteresis loops for b-axis-oriented Dy are calculated, using the parameters developed in 

the previous section.  These are shown as Figure 6.9.  The calculations exhibit two 

undesirable features. Compressive strain.  The lack of hysteresis reflects the multiple states 

with small energy barriers, as shown in the polar diagram in Chapter 5.  When the field is 

reversed new states develop and the energy barriers are such that these are easily 

populated in low applied fields.  Tensile strain.  The calculation predicts abrupt saturation 

with coercive fields larger than observed by experiments.  Since domain wall pinning will 

increase the already-large coercive fields, the calculation suggests that a pinning 

mechanism will be an increasingly important contribution for increasing compressive 

strain.  The effect of domain wall pinning is discussed next. 

 

Domain Wall Pinning 
 

Recall that Chapter 5 discusses that a domain wall pinning mechanism may be an 

increasingly important effect for increasing compressive strain.  This is a mechanism 

whereby the system can achieve a state of lower free energy by coincidence of a domain 

wall with a defect, such as a dislocation, inclusion, or impurity [24].  Isotropic domain wall 

pinning can be incorporated into the thermal activation model by increasing the barrier 

heights which separate states, but leaving other parameters unchanged. 

 The calculation is modified in this way and two important results are immediately 

apparent; these are shown as Figure 6.10.  First, keeping all other parameters fixed, the 

coercivity increases as the pinning potential increases.  This behavior is expected, but it is 

reassuring to see that the most direct effect of pinning is on coercivity, rather than on other 

aspects of the calculation (such as saturation field, etc.).  Second, for a pinning potential to 

produce reasonable coercivity, it must be roughly equivalent in magnitude to K6
6 , the 

basal plane anisotropy coefficient.  This is reasonable, since the basal plane anisotropy 

establishes the baseline energy barrier for all states.  Insofar as physical intuition regarding 
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the effect and magnitude of the pinning potential on the hysteresis loops would be 

otherwise difficult or impossible to develop, this again demonstrates the utility of these 

simple magnetization models. 
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Figure 6.9.  Calculated hysteresis loops, for compressive (C), unstrained (U) and tensile (T) b-axis-
oriented Dy, using the parameters discussed in the text and neglecting any domain wall pinning 
mechanism. 
 

Temperature Effects 
 

The thermal activation model is used to study the effects of temperature on the hysteresis 

loops.  It is clear that the energy barriers which separate states will become more 

surmountable with increasing temperature, so the coercive fields will decrease.  However, 

the effect of temperature on the shape of the hysteresis loops is less clear. 

 The effect of temperature on the hysteresis loops for compressed and stretched Dy 

is shown in Figures 6.11 and 6.12.  Two features are immediately apparent.  First, the 
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coercive field is reduced with increasing temperature, reflecting the increasing ability for 

moments to surmount energy barriers by thermal activation.  Second, with increasing 

temperature the hysteresis loops for compressed Dy become increasingly wasp-waisted, in 

general agreement with the experimental data in Chapter 4.  This reflects the reversibility 

of magnetization at low fields and an increasing tendency towards irreversible population 

of states at higher fields. 
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Figure 6.10.  The effect of domain wall pinning in compressed Dy, for various values of the pinning 
potential.  A pinning mechanism causes the hysteresis loops to open, giving rise to a coercive field 
which increases with increasing pinning. 
 

Extension to Other Applied Field Directions 
 

The magnetoelastic Hamiltonian for b-axis-oriented Dy shows the easy magnetization axes 

depend on strain.  For tensile strain, there is a unidirectional easy axis along the in-plane a-

axis.  For compressive strain, the easy axes become canted towards the out-of-plane a-axes.  

Important corroborating evidence for this model was provided in Chapter 4 by a change in 

skewness of hysteresis loops collected with the applied field along the film-normal b-axis. 
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Figure 6.11.  The effect of temperature on the hysteresis loops for compressed Dy.  Increasing 
temperature gives rise to the narrow, wasp-waisted curves, exactly as in experimental data.  Values 
here are 10 K through 14 K, but this is somewhat arbitrary according to the volume used for energy 
density conversion. 
 

 The magnetic anistropy is examined with the thermal activation model, by taking 

the applied field to be along the out-of-plane b-axis. Figure 6.13 presents calculations 

performed for a range of compressive and tensile strain.  The calculation also shows that 

the out-of-plane b-axis becomes an increasingly-easy magnetization axis for increasing 

compressive strain, in agreement with the experimental results in Chapter 4. 

 Unfortunately, as discussed in the previous Section, restriction of this model to 

moments which lie in the basal plane precludes calculations of hysteresis loops with the 

applied field along the in-plane c-axis. 

 



 

 177

-80 -60 -40 -20 0 20 40 60 80

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
3

T
2

T1

M
 / 

M
S

Applied Field  ( kOe )

 
Figure 6.12.  The effect of temperature on the hysteresis loops for stretched Dy.  As the temperature 
is increased, barriers are more easily surmounted by thermal activation and the coercive field is 
subsequently reduced. 
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Figure 6.13.  Calculated virgin curves for b-axis-oriented Dy with the applied field along the film-
normal b-axis.  Curves for a complete range of strain are provided, demonstrating that the film-
normal b-axis becomes an increasingly-easy magnetization axis with increasing compressive 
strain, as predicted by the magnetoelastic Hamiltonian. 
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6.6  Summary 
 

Magnetization in an applied magnetic field depends on the behavior of magnetic domains 

as well as the Hamiltonian which governs the moments.  For the case of b-axis-oriented Dy, 

this complicated problem has been diagonalized to study the dependence of the 

magnetization on the Hamiltonian alone.  Two models of magnetic ordering in b-axis-

oriented Dy were presented: a thermal equilibrium model and a thermal activation model.  

The former assumes states are populated according to a Maxwell-Boltzmann distribution 

and therefore predicts no hysteresis effects.  The latter assumes states are populated by 

transitions to and from adjacent states and therefore exhibits hysteresis.  The important 

results of this work are derived from the thermal activation model, and these are 

summarized as follows: 

 1.  The central result is verification that the magnetoelastic Hamiltonian causes 

hysteresis loops to “square up” as the strain is changed from compressive to tensile, 

reflecting the change in easy axis of magnetization from the canted, out-of-plane a-axis to a 

unidirectional in-plane a-axis. 

 2.  Coercivity in compressed Dy was well-described by a domain wall pinning 

mechanism.  The magnitude of the pinning potential is approximately that of the basal 

plane anisotropy, K6
6 . 

 3.  The model predicts high coercivity for stretched Dy, resulting from deep in-plane 

magnetoelastic states.  The coercivity decreases with increasing temperature.  Since high 

coercive fields are not observed in real samples, this suggests an additional mechanism, 

possibly involving domains, lowers effective barrier heights in b-axis-oriented Dy. 

 4.  Wasp-waisted hysteresis loops for compressed Dy result with increasing 

temperature, and these loops become square with increasing tensile strain.  This agrees 

well with behavior observed in real samples.  This may indicate the relative importance of 

the Hamiltonian over magnetic domain processes in the ferromagnetic ordering. 

 These models have been applied to varying applied magnetic fields (hysteresis 

loops), but they can be augmented to include possible changes in strain or other 
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parameters which may accompany magnetization.  Work in progress by C. Durfee in this 

research group may elucidate the importance of these processes. 
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