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Chapter Five 

 

Magnetic Properties:  Discussion 

 

 

5.1 Overview 
 

Chapter 4 presents measurements of magnetic properties for b-axis-oriented Dy, obtained 

via SQUID magnetometry.  Nearly all observed magnetic properties differ significantly 

from c-axis-oriented thin film Dy and from bulk Dy.  This confirms that the reduction of 

symmetry has important consequences for systems with strong, symmetry-dependent 

properties.  The present Chapter specifically addresses these differences to show how they 

can be understood in terms of basic magnetic interactions.  It begins with a discussion of 

magnetic anisotropy, since this contains essential ingredients for an interpretation of the 

magnetic phase diagram.  Next, the ferromagnetic/anti-ferromagnetic phase transition is 

discussed.  It is shown that the phase behavior of b-axis-oriented, c-axis-oriented, and bulk 

Dy can be understood by a single model which is dominated by the known magnetoelastic 

constants of bulk Dy.  The remaining Sections discuss other significant experimental 

observations.  These include the observed critical fields, the coercivities and domain wall 

pinning, and the reduction of Néel temperature from that of bulk Dy.  Finally, magnetic 

relaxation measurements are discussed. 

 

5.2  Magnetic Anisotropy 
 

Magnetic anisotropy causes the magnetic moments to prefer specific crystallographic 

directions.  Magnetization is more readily achieved by a small applied field along an 

“easy” direction, and conversely it is less readily achieved by the same field applied along 
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a “hard” direction.  In bulk Dy, the easy magnetization axes are the six equivalent [ ]1120  

directions and the [0001] axis is the hard axis.  The results of Chapter 4 show that for a field 

applied along the in-plane a-axis, the hysteresis loops change shape from square to 

diagonal as the strain changes from tensile to compressive.  For a field applied along the 

out-of-plane b-axis, almost the opposite effect is seen; in the case of compressive strain, 

however, the hysteresis loops are less square.  The interpretation provided there has the 

in-plane a-axis becoming an increasingly easy axis for increasing tensile strain and an 

increasingly hard axis for compressive strain.  For compressive strain the easy axis 

changed from the in-plane a-axis to favor the two out-of-plane a-axes. 

 A superposition of the anisotropy effects presented in Chapter 1 can be used to 

understand this behavior.  The relevant magnetoelastic Hamiltonian that gives the total 

energy of ferromagnetic Dy is 

 H = HCF + HME + HS + HZ . (5.1) 

This includes 1) HCF, the magnetocrystalline anisotropy, which derives from the 

electrostatic potential and depends on the point symmetry of the Dy lattice [1]; 2) HME, the 

magnetoelastic energy, which couples the preferred orientation of the moment to elastic 

distortions; 3) HS, shape anisotropy, which couples the direction of the magnetic moment 

to the shape of the crystal, via demagnetization fields generated at the sample boundaries; 

and 4) HZ, Zeeman energy, which couples the magnetic moments to the applied field.  

Each of these terms is explained in Chapter 1. 

 The magnetic contribution to the energy of thin, strained b-axis-oriented Dy in zero 

applied field, HZ = 0, is calculated using this Hamiltonian, Eq. (5.1).  The results are 

presented as Figure 5.1, which gives the energy as a function of magnetization direction.  

Only the basal plane directions are shown since the [0001] axis remains the hard 

magnetization axis. 

Bulk Dy.  Magnetocrystalline anisotropy is the only relevant effect so the free energy 

exhibits the expected sixfold symmetry.  The six equivalent [ ]1120  directions are the easy 

magnetization axis. 
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Figure 5.1.  (Top) A polar plot of the energy of a magnetic moment in the basal plane of strained, 
thin, b-axis-oriented Dy, compared with the bulk case.  (Bottom) A rectangular plot of the free 
energy, in which the energy minima for the compressive, unstrained, and tensile cases are 
identified.  The bulk and unstrained cases differ because of shape anisotropy, an important effect. 
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Unstrained b-axis-oriented Dy.  A large difference occurs between bulk Dy and thin 

unstrained b-axis-oriented Dy owing to the shape anisotropy of the latter.  The free energy 

for the states magnetized along the in-plane [ ]1120  axis remains unchanged, and the 

results show that it becomes less favorable for the moment in a thin film to cant out of the 

film plane. 

Compressed b-axis-oriented Dy.  The in-plane [ ]1120  direction becomes an increasingly hard 

magnetization direction for increasing compressive strain.  For sufficiently large 

compressive strains, the in-plane [ ]1120  direction no longer remains the easy axis.  The 

magnetoelastic interaction makes it favorable for a Dy moment to cant out of the plane of 

the film into one of the four equivalent out-of-plane [ ]1120  approximate energy minima.  

A magnetic moment with a perpendicular component is otherwise energetically 

unfavorable, because of shape anisotropy, but this energy deficit is overcompensated by 

the reduction in magnetoelastic energy. 

Stretched b-axis-oriented Dy.  The in-plane [ ]1120  axis is now the easy axis and since the 

energy for this direction decreases with increasing tensile strain it becomes an increasingly 

easy axis of magnetization.  This behavior recalls the magnetostriction of bulk Dy which, 

upon becoming ferromagnetic, exhibits a spontaneous orthorhombic distortion which 

lowers the hexagonal symmetry as the lattice elongates and magnetizes along one of the 

equivalent of the [ ]1120  directions [2].  The effect of tensile epitaxial strain in films is to 

force exactly this type of lattice  distortion, thus making the two equivalent in-plane [ ]1120  

directions the states of lowest energy. 

 When the Zeeman interaction is added to yield the energy of a Dy moment in a 

magnetic field applied along the in-plane [ ]1120  direction, the results are as shown in 

Figure 5.2.  For all applied fields there is a reduction of energy along the field direction.  

As the applied field increases, regardless of strain, the in-plane [ ]1120  direction eventually 

becomes the orientation of lowest energy.  This is to be expected because for a sufficiently 
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large field the Zeeman term exceeds all other anisotropic terms and rotates the moments 

into alignment parallel with the field. 

 In summary, when the bulk properties of Dy are modified by the anisotropy caused 

by strain, shape anisotropy and applied field, the results are quantitatively consistent with 

the experimentally-observed behavior. 
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Figure 5.2.  Calculated energy of a Dy moment in b-axis-oriented Dy in a field applied along the in-
plane a-axis direction.  For sufficiently strong fields, the in-plane a-axis becomes the direction of 
lowest energy, regardless of strain. 
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5.3  Strain-dependence of Ferromagnetic Ordering, T  
 

The magnetic phase diagram of b-axis-oriented Dy, shown as Figure 4.5 of Chapter 4, 

introduces three important features.  First, the lowest observed critical temperature occurs 

for unstrained Dy at 78 K and this is slightly lower than that observed for bulk Dy, 90 K.  

Second, the critical temperatures increase with increasing strain, both compressive and 

tensile.  Third, the strain dependence of the critical temperature is approximately linear, 

with the weaker strain dependence on the compressive side.  This phase diagram is 

markedly different from both that of bulk Dy and c-axis-oriented Dy. 

 This Section provides, for the first time, a calculation of the effect of strain on TC for 

b-axis-oriented, c-axis-oriented, and bulk Dy, using the same approach and material-

dependent parameters for all cases.  The calculation initially follows the model developed 

by Erwin, in which the elastic and magnetoelastic energies for the thin film cases are 

calculated using the parameters from bulk Dy.  In the present case, however, the 

calculation is extended to obtain the temperature-dependence of TC.  The material is 

organized in the following way.  First, the magnetoelastic energy difference between the 

ferromagnetic and antiferromagnetic phases of Dy is calculated.  Next, this energy 

difference is connected to the TC by means of the Gibbs free energy.  Finally, important 

physical parameters such as the latent heat are determined by fitting the Gibbs function to 

the data. 

 

Calculation of Magnetoelastic Energy 
 

Calculations of the magnetoelastic energy difference between the FM and AF states for the 

FM/AF phase transition in bulk and thin film Dy are reviewed in Chapter 1.  It was 

suggested by Cooper in 1967 that the driving energy derived principally from the lowest-

order magnetoelastic terms associated with the reduction of cylindrical symmetry [3],[4].  

This model was improved by Evenson and Liu, who wrote an expression for the driving 

energy which involved the approximate exchange energy in the AF state [5].  Dumesnil 

and co-workers used experimental measurements of turn angle to model the phase 



 

 133

diagram of c-axis-oriented Dy [6].  Unfortunately, while the qualitative ideas by Cooper 

remain valid, the simplified description of the long-range exchange mechanism employed 

in later work undermines the specific results reported by Evenson and Liu and used by 

Dumesnil and co-workers. 

 In any event, an application of this formalism to b-axis-oriented Dy is problematic 

for several other reasons.  Most significantly, there are as yet no measurements of the 

magnetic periodicity of the AF state.  The hexagonal symmetry is broken, therefore the 

helical structure (normally observed in bulk and in c-axis-oriented thin films) may 

reasonably be expected to contain higher-order Fourier components, due both to the 

symmetry-breaking of the magnetoelastic interaction as well as demagnetization forces 

from the periodic component of magnetization normal to the film plane.  In fact, since b-

axis-oriented thin films are not clamped against out-of-plane distortions [7], a periodic 

lattice distortion near the surface may result, similar to that which accompanies the charge-

density-waves in Cr [8]. 

 For these reasons a phenomenological calculation of the type first employed by 

Erwin offers considerable advantages [9],[10].  This method was first applied to explain the 

observed suppression of TC in strained, epitaxial c-axis-oriented rare earths.  It is an 

accurate model because the magnetoelastic coefficients are fitted to the measured 

equilibrium strains of the bulk material.  The calculation involves two parts:  1) the elastic 

and magnetoelastic energies are calculated for the AF and FM states using the actual 

strains appropriate for the specific cases.  The exchange energies of the AF and FM states 

are not known but are represented here by the first terms of Taylor expansions in the 

strain.  The results are augmented to include shape anisotropy, which for compressed b-

axis-oriented Dy is a significant contribution.  The calculation allows the exchange 

interaction term to be inferred from a fit to the experimental results, thereby affording a 

first determination of its variation with orthogonal strains. 

 The magnetoelastic energy is calculated from the elastic energy, quadratic in strains, 

which shifts to a new equilibrium value through the addition of a magnetic term (linear in 

strain).  From first principles, Callen and Callen show that the magnetic free energy is a 
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linear perturbation that derives from the single-ion (magnetoelastic) and two-ion 

(exchange) mechanisms, Eq. (1.18).  From a wider perspective, however, one can always 

expand the dominant exchange and magnetocrystalline terms in a Taylor series involving 

strain, without regard to interaction-specific details [11].  The magnetoelastic energy is 

 

E E E

c K

= +

= −∑ ∑
elas me

1
2

µ ν
µν µµ νν µ µµε ε ε

µ,

 , (5.2) 

where ci and Ki have numerical values obtained from bulk Dy; these are tabulated in Table 

5.1 and 5.2, respectively.  Eq. (5.2) is valid for stretched b-axis-oriented Dy, c-axis-oriented 

Dy, and bulk Dy under hydrostatic stress uniaxial stress applied along the b and c 

directions.  In these cases, the compression of ε22 favors magnetization along [ ]1120 .  For 

compressed b-axis-oriented Dy, and bulk Dy under uniaxial stress applied along the 

[ ]1120  direction, however, ε22 is positive and the magnetization is oriented along the 

canted, out-of-plane [ ]1120  directions.  For these cases, the new magnetoelastic constants 

Kii
C  are obtained from those for the tensile strain Kii

T  by a 60º rotation of coordinates, 
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 (5.3) 

 To evaluate the energy, all strains must be known.  For the b-axis-oriented and c-

axis-oriented cases, the films are both strained and clamped and Eqs. (5.2) and (5.3) are 

evaluated using the in-plane strains established by epitaxy.  The thin film strains in the 

unclamped out-of-plane direction are easily calculated using the elastic equations given as 

Eq. (1.8).  For the bulk uniaxial and hydrostatic cases, the strains are obtained from the 

applied pressure similarly by means of Eq. (1.8).  The energies are shown as Figure 5.3, 

and the differences in energy (∆E=EFM-EAF) are shown as Figure 5.4.  For comparison with 

measured data (see next Section), the cases considered are b-axis-oriented Dy, c-axis-
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oriented Dy, and bulk Dy under both uniaxial and hydrostatic stress.  Because the elastic 

contribution does not change between the AF and FM states, the driving energies depend 

linearly on strain.  In what follows, an argument which connects the driving energy linearly 

with TC is presented. 

 

 

 

Elastic Constant (J/cm3) 

c11 7.0 x 104 

c12 1.55 x 104 

c13 1.87 x 104 

c33 8.35 x 104 

c44 2.63 x 104 

c66 2.72 x 104 

 

Table 5.1.  The elastic constants used in the calculations.  These are obtained from the irreducible elastic 
constants, discussed in Chapter 1. 
 

 

 
Coefficient (J/cm3) 

 FM AF 

KT
11  -7.05 x 10-1 -1.63 x 102 

KT
22  -3.99 x 102 -1.40 x 102 

KC
11  4.60 x 102 6.74  x 101 

KC
22  -2.31 x 102 -2.68 x 102 

K33  2.31 x 102 1.17 x 102 
 
Table 5.2  The magnetoelastic coefficients used in the calculations.  These are calculated using x-ray diffraction 
measurements of the bulk Dy lattice parameters, as discussed in Chapter 1. 
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Figure 5.3.  The magnetoelastic energy as a function of strain for b-axis-oriented (left) and c-axis-
oriented (right) Dy, for the ferromagnetic and helical antiferromagnetic states.  The energy of the 
ferromagnetic state is lower for tensile strain, as expected qualitatively from knowledge of the type of 
orthorhombic distortion which accompanies ferromagnetism. 
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Figure 5.4:  The magnetoelastic driving energy as a function of strain for b-axis-oriented (left) and c-axis-
oriented (right) Dy.  The driving energy for bulk Dy (0.94 J/cm3) is shown as a dotted line. 
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Figure 5.5.  (Left) The magnetoelastic energy for bulk Dy under hydrostatic stress.  (Right) The difference in 
magnetoelastic energy for bulk Dy under uniaxial and hydrostatic stress. 
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Relationship Between TC and Driving Energy 
 

The previous Section shows that the difference in magnetoelastic energy between the FM 

and AF states varies linearly with strain.  In a study of Er using this magnetoelastic model, 

Borchers found a similar linear relationship: the ferromagnetic transition of Er grown on Y 

was supressed in zero field, but the magnetoelastic energy could be related linearly to the 

energy equivalent of the critical field at different temperatures using the Zeeman 

interaction, in good agreement with experiment [12].  This Section addresses, for the first 

time, whether this linear behavior is reasonable. 

 Until now, the entropic contribution to the free energy has been neglected.  The total 

free energy (including elastic, magnetoelastic, and entropy terms) is 

 F = E+E0 - TS , (5.4) 

where T is temperature and S is entropy, which is comprised on lattice and magnetic 

contributions.  The zero point energy E0 of each state is non-trivial; this has been discussed 

for the rare earths by Egami [13].  The transition between the FM and AF states is first 

order, therefore ∆F = 0 at T=TC  and Eq. (5.4) becomes 

 T
S

E EC = +
1

0∆
∆ ∆( ( ))ε  (5.5) 

where ∆E0  is the enthalpy of formation (latent heat) of the phase transition.  This assumes 

that the entropy difference at TC does not depend on temperature.  Since there is no strong 

temperature-dependence of the magnetic degrees of freedom in the FM or AF state at TC, 

this approximation is reasonable.  Eq. (5.5) thus provides the required linear connection 

between the driving energy and temperature. 

 A first principles calculation of the variation of TC with strain requires that all terms 

in Eq. (5.5) be known. Unfortunately, the exact numerical dependence of the exchange 

energy ∆EEX on strain and the shape anisotropy ES for compressed b-axis-oriented Dy are 

not known.  However, both TC vs. strain (from experiment) and ∆EME vs. strain (from 

calculation) are known.  Further, it is reasonable from Eq. (1.19), or otherwise by Taylor 

expansion, that ∆EEX depends linearly on strain for small strains.  Since the FM/AF phase 
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transition is first order and the Gibbs free energies must be equal (∆F = 0) at the transition, 

the measured TC and calculated ∆EME can be used in a fitting scheme to experimentally 

determine the strength of ∆EEX and ES. 

 This thesis work provided measurements of TC vs. strain for b-axis-oriented Dy.  In 

addition, there are results from Tsui and Flynn for c-axis-oriented Dy [14] and Bartholin for 

bulk Dy (under hydrostatic stress, and under uniaxial stress for both a spherical and a 

cubic sample [15]).  The results of the present fitting for these cases are presented in Table 

5.3, and the calculated temperatures and energies appear in Figures 5.6, 5.7, and 5.8.  
Further details are now given for each of the cases considered. 

b-axis-oriented Dy. For compressed Dy, the shape anisotropy is calculated to be -0.35 J/cm3, 

which corresponds to a demagnetizing factor of about 10%.  In a previous study, 

demagnetizing factors for thin epitaxial Er superlattices were as low as 30%, so this value 

is reasonable.  Moreover, the calculated latent heat is 2 70 0 34 3. . /± J cm , which agrees well 

with the value of 2 74 0 07 3. . /± J cm , obtained in recent experiments on bulk Dy [15] by 

Gschneidner and co-workers.  Additionally, the entropy difference 0 046 0 005 3. . / /± J cm K  

lies reasonably close to the measured 0 030 0 001 3. . / /± J cm K  [15].  This establishes that the 

fitting parameters are physically-reasonable. 

c-axis-oriented Dy.  Since the magnetic moments are constrained to lie in the plane of the 

film, there is no contribution from shape anisotropy.  The calculated latent heat and 

entropy difference are also in good agreement with experiment. 

Bulk Dy under uniaxial stress, cubic sample.  The calculated shape anisotropy is nearly 

negligible, which may point to the importance of domains in this sample.  For the case of 

uniaxial pressure along [ ]1120 , the data could be fit only by assuming that the easy 

magnetization axis rotates into the four remaining [ ]1120  directions.  In the original 

uniaxial pressure experiments this change in easy magnetization axis was not detected, so 

that the present research with thin films makes an important clarification of this early work. 

Bulk Dy under uniaxial stress, spherical sample.  No reasonable fitting parameters could be 

obtained for the case of uniaxial pressure along [ ]1120 .  Given the large disparity between 
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the data obtained for the cubic and spherical samples, however, this may point to 

measurement inaccuracies. 

Bulk Dy under hydrostatic stress.  The calculated exchange energy is EEX = −0 22 11
3. /ε J cm , 

which is of opposite sign to the other calculated exchange energies.  This appropriately 

reflects that the difference in magnetoelastic energy increases with increasing hydrostatic 

pressure, but that the transition temperature correspondingly decreases. 

 

Sample EEX 
J/cm3 

ESε11 
J/cm3 

∆S 
J/cm3/K 

∆E0 
J/cm3 

b-axis 0.30 -0.35a 0.046 ± 0.006 2.70 ± 0.34 
c-axis 0.10 0 0.032 ± 0.009 2.25 ± 0.64 

bulk, cube, P||a 0.05 0 0.049 ± 0.006 4.25 ± 0.55 
bulk, cube, P||b 0.38 0 0.028 ± .003 2.45 ± 0.29 
bulk, cube, P||c 0.14 -0.10 0.022 ± 0.009 2.02 ± 0.78 

bulk, sphere, P||a n.a. n.a. n.a. n.a. 
bulk, sphere, P||b 0.30 -1.0 0.047 ± 0.02 5.26 ± 2.1 
bulk, sphere, P||c 0.29 0 .018 ± .005 1.60 ± 0.44 
bulk, hydrostatic -0.22 -1.0 0.027 ± 0.0005 2.42 ± 0.03 

a In b-axis-oriented Dy shape anisotropy applies only to compressive strain, 
 when the moments have a component normal to the film plane. 
 

Table 5.3.  The results of fitting the calculated magnetoelastic energy and measured TC to the model discussed in 
the text. 
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Figure 5.6.  The calculated TC for c-axis-oriented Dy (left) and b-axis-oriented Dy (right).  The solid line is 
a fit to the data using the model discussed in the text. 
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Figure 5.7.  The best fitting energy difference (∆E=EFM-EAF) for c-axis-oriented Dy (left) and b-axis-oriented Dy 
(right).  For compressed b-axis-oriented Dy, shape anisotropy is an additional term. 
 

 

 
Figure 5.8.  The calculated TC for bulk Dy under under hydrostatic pressure.  The solid line is a fit to the data 
using the model discussed in the text. 
 

 In summarizing this calculation it is noted that the phase transition is first order and 

the transition temperature TC depends linearly on the differences of internal energies for 

the ferromagnetic and antiferromagnetic phases.  Reasonable values of the exchange 

energy, shape anisotropy, latent heat and entropy change are obtained when the model is 

fit to the TC vs. strain data for both b-axis- and c-axis-oriented Dy, and for bulk Dy under 

both uniaxial and hydrostatic strains.  Three key results of this analysis are 1) the shape 

anisotropy corresponds to a demagnetizing factor of 10% for b-axis-oriented Dy, and this 

points to the importance of domain effects on the observed ferromagnetic ordering; 2) 
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analysis of published data for bulk Dy under uniaxial strain shows that the sample 

magnetizes along different [ ]1120  axes, depending on whether the strain is applied parallel 

to the a or b axes; and 3) shape anisotropy plays a negligible role for bulk samples. 

 

5.4  Expected Magnetostriction 
 

Chapter 1 reviews the behavior of the ferromagnetic transition in bulk Dy in zero field.  

The transition is accompanied by a spontaneous orthorhombic distortion with 

approximate strains ∆a/a=+0.2%, ∆b/b=-0.5%, ∆c/c=+0.3%, as shown in Figure 5.9.  Beach 

and co-workers found that despite epitaxial clamping c-axis-oriented Dy is nevertheless 

able to undergo a similar orthorhombic distortion by breaking into domains for which the 

average strain is zero.  This was recently studied in more detail by O’Donovan, who found 

that the distortion is first observable at temperatures somewhat lower than TC, and that the 

distortion slowly grows in magnitude as the temperature is reduced [16].  A mechanism 

whereby the epitaxial clamping constraint can be overcome by an appropriate domain 

structure was proposed by Tsui and Flynn [14]. 

 Unfortunately, measurements of the lattice constants of b-axis-oriented Dy as a 

function of temperature are not yet available.  However, the mathematical framework 

developed in Section 5.3 permits calculation of the expected magnetostriction.  At any 

temperature above or below TC the sample must be in equilibrium, so the derivative of Eq. 

(5.2) with respect to the equilibrium strains must vanish.  Since the film is clamped to the 

substrate, this gives 

 ∆ε 22 22 22 11= −( )/K K cFM AF  (5.6) 

where KFM
22  and KAF

22  are the magnetoelastic coefficients in the ferromagnetic and 

antiferromagnetic states, respectively.  For the case of stretched b-axis-oriented Dy, 

substitution of the values of Table 5.1 and 5.2 gives ∆ε 22 0 37%= − . .  This is a compression 
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along the out-of-plane b-axis, but of lesser magnitude than the value for bulk Dy.  For the 

case of compressed b-axis-oriented Dy, this gives ∆ε 22 0 053%= + . , which is a small 

expansion.  Because the film is clamped in the two in-plane directions, these strains are 

equal to the volume dilatation which accompanies the transition. 

 This behavior is sketched in Figure 5.9.  Because of epitaxial clamping the different 

polarizations which are each possible in the stretched and compressed cases will give rise 

to identical magnetostrictions.  Precise measurements of the magnetostriction of epitaxial 

Er are currently being conducted by C. Durfee; this work may eventually be extended to 

include b-axis-oriented Dy. 

 

 

 

 

 

 

 

 

 
 
Figure 5.9.  The orthorhombic distortions, shown exaggerated, which accompany the ferromagnetic transitions 
in bulk Dy (left) and those expected for b-axis-oriented Dy (right). 
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5.5  The Critical Field, HC 
 

An abrupt inflection or change in slope of M vs. H can be seen in Figures 4.3 and 4.7 of 

Chapter 4 between TC and TN, when the b-axis-oriented Dy samples are antiferromagnetic.  

This kink occurs at a specific critical value HC of the applied field.  Two important 

observations are 1) the critical field is almost independent of temperature and, in contrast 

to both bulk and c-axis-oriented Dy, does not vanish as T approaches TC; and 2) the critical 

field depends on strain.  This Section interprets the behavior using the theory developed 

for critical fields in bulk Dy. 

 The nature of the critical field in bulk Dy was reviewed in Chapter 1.  The phase 

diagram shown as Figure 1.14 indicates that an applied field can force the material into 

either a ferromagnetic state or a fan state, depending on the temperature and the field 

strength.  It is obvious that HC must depend on the magnetic anisotropy, but the 

temperature dependence is less clear.  This phase diagram was first explained in a series 

of calculations by Nagamiya, Kitano, and co-workers who showed that the critical field 

depends on the strength of the basal plane magnetocrystalline parameter K6
6  [17],[18],[19].  

Since this parameter depends weakly on temperature, the critcal field HC also depends on 

temperature; the relationship between the two is made clear by the reduced phase 

diagram, shown as Figure 1.15. 

 In Section 5.2 it is shown that, in addition to the usual magnetocrystalline 

anisotropy, shape and magnetoelastic anisotropy make important contributions to the total 

basal plane anisotropy of b-axis-oriented Dy.  Although a rigorous mathematical 

description is lacking for b-axis-oriented Dy, HC clearly must depend not only on 

magnetocrystalline anisotropy K6
6  but also on the magnetoelastic and shape anisotropies.  

Since these additional terms are large and temperature-independent, it therefore follows 

that HC must not depend strongly on temperature. 

 The magnitude of the combined magnetoelastic and shape anisotropy contribution 

can be estimated from the depth of the energy barriers for a magnetic moment as it is 

rotated in-plane, as shown in Figure 5.1.  The energy barriers for compressed, unstrained, 

and stretched b-axis-oriented Dy are larger than the bulk value by a factor of 3, 5, and 9, 
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respectively.  Thus, regardless of the state of the strain, magnetoelastic effects in thin b-axis 

Dy increase the usual magnetocrystalline anisotropy by a significant and temperature-

independent amount.  This provides a qualitative explanation for the observed 

temperature-independence of HC. 

 Unfortunately, the additional anisotropic terms for b-axis-oriented Dy are not 

included in the Hamiltonian of Eq. (1.31) and therefore Eq. (1.33) cannot be used to predict 

the strain dependence of HC.  Qualitatively, however, Eq. (1.32) shows that the basal plane 

anisotropy reduces the critical field, so that the increasing anisotropy demonstrated in 

Figure 5.1 above for compressed, unstrained, and stretched Dy suggests that the critical 

field should decrease as the strain changes from compressive to tensile.  This is precisely 

what is observed in Figure 4.7.  The in-plane [ ]1120  axis becomes an increasingly easy 

magnetization axis for tensile strain, so a progressively smaller applied field is required to 

force magnetization in this direction. 

 Note that there nevertheless remains some small temperature dependence of HC.  It 

is reasonable that this is due to a small magnetoelastic contribution to HC which derives 

from any small temperature dependence of the elastic constants, and possibly thermal 

expansion of the substrate and the epitaxial clamping. 

 

5.6 Domain Walls and Domain Wall Pinning 
 

The coercive fields for b-axis-oriented Dy are reported in Figure 4.13 of Chapter 4.  The 

coercive field increased with increasing compressive strain, and it remains roughly 

constant for all values of tensile strain.  This Section first addresses a possible magnetic 

domain structure in b-axis-oriented Dy, and it then interprets the observed coercivities in 

the context of the calculation by Egami and Graham that are reviewed in Section 1.4. 

 

Magnetic Domains 
 

Chapter 1 discussed that a magnetic system can lower its overall free energy by breaking 

into a collection of spatially-discrete but dipole-coupled domains, in which each is 
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uniformly magnetized.  It is clear that there must be magnetic domains in the b-axis-

oriented Dy samples since, although the samples are ferromagnetic below TC, 

measurements of magnetization in zero applied field show negligible net moments.  The 

magnetizations of bulk samples therefore grow by domain wall movement or by a 

combination of domain growth and coherent rotation of moments in a domain.  The 

existence and motion of domain walls gives rise to non-zero coercive fields which derive 

from two basic mechanisms associated with domain walls:  intrinsic coercive fields and 

coercive fields due to domain wall pinning. 

 

 
Figure 5.10.  The simplest domain structure possible in b-axis-oriented Dy.  The 180º Bloch and 
Néel walls are parallel to the [1120] and [0001] directions, respectively.  Not shown are edge 
domains, which may exist to reduce magnetic poles at the surface. 
 

 Unfortunately, experimental measurements of the domain walls b-axis-oriented Dy 

are lacking [20], [21].  Nevertheless, a possible domain structure appears as Figure 5.10.  

The strong exchange coupling in the basal plane (even in the AF state, the basal plane is 

ferromagnetic) suggests 180º domain walls run parallel to the (0001) basal planes.  The 

magnetization can freely rotate between basal planes and thus these are likely to be Bloch 

walls (with the axis of rotation perpendicular to the domain wall).  Domains walls parallel 

to ( )1120  are less likely, due to strong basal plane ferromagnetic coupling, but these may 

also exist [22]. 
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Domain Wall Pinning 
 

Section 1.4 reviews a calculation by Egami and Graham of the energetics of 180º basal-

plane domain walls in Dy.  These authors showed that such domain walls give rise to an 

intrinsic coercive field of about 1 kOe which depends on exchange, magnetocrystalline, 

and magnetoelastic anisotropies [23],[24].   

 For comparison, the coercive fields for b-axis-oriented Dy are considered at the 

lowest measured temperature, since the calculation of Egami does not include the effects 

of temperature.  For tensile strain the agreement between the calculation discussed in 

Section 1.4 and the experimental result of about 1 kOe, shown in Figure 4.13, suggests the 

observed coercivities are an intrinsic effect caused by domain walls.  For b-axis-oriented 

Dy grown under compressive strain, however, the observed coercive fields are larger than 

calculated.   

 At issue is whether this increase is due to the intrinsic coercive force, or else due to 

pinning of domain walls by an external mechanism.  As indicated by the difference 

between the solid curve and the dotted line of Figure 1.16, the structure of the domain wall 

is established principally by the strong exchange coupling term with S Ji i
2

1, ±  = 170 K and 

S Ji i
2

2, ±  = -46 K.  The additional magnetocrystalline energy with K6
6  = -2.5 K and 

magnetoelastic anisotropies with Bγ γε  = -4.0 K are a small perturbation on this term [23].  

As shown in Figure 5.1 for b-axis-oriented Dy, the additional shape and magnetoelastic 

anisotropy are still small in comparison to the stronger exchange mechanism.  Thus, the 

magnitude of the coercive field calculated by Egami should not be greatly altered in b-

axis-oriented Dy. 

 Moreover, as can be seen in Figure 5.1, b-axis-oriented Dy under tensile strain has 

two stable configurations: alignment parallel and antiparallel to the in-plane [ ]1120  axis in 

the respective cases.  b-axis-oriented Dy under compressive strain has four additional 

stable states of minimum energy, and the energy barriers between these states are greatly 

reduced with respect to those for tensile strain.  As a result, the expected modification of 
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the coercive field calculation from the values of Egami should yield, if anything, slightly 

higher coercive fields for the case of tensile rather than compressive strain [23], which is the 

opposite of that observed. 

 This analysis shows the increase of coercive field with increasing compressive strain 

is not likely to be an intrinsic effect of magnetic domains in thin films.  The existence of an 

alternative domain configuration provides one possible resolution to the problem.  It is 

known that the nucleation and growth of 90º edge domains is an important mechanism in 

the magnetization of thin films [25].  Unfortunately, experimental measurements of domain 

walls in b-axis-oriented Dy are lacking. 

 It is also possible that the increase of coercive field with increasing compressive 

strain may arise from a domain wall pinning mechanism.  A numerical model which 

provides some evidence corroborating this is presented in Chapter 6.  From a structural 

viewpoint, however, no evidence suggests that compressively-strained Dy samples on Lu-

rich buffers are less structurally perfect than their tensile counterparts grown on Y-rich 

buffers.  Lu, with slightly better lattice misfit, nucleates on Zr, whereas Y does not.  In fact, 

the narrowest transverse x-ray linewidth of 0.3º was obtained for the most compressively-

strained sample of Dy on pure Lu.  Reversed domains near an imperfection may 

contribute to domain wall motion [26]; such imperfections may expedite as well as impede 

magnetization reversal [27], and therefore greater imperfection density may exist in 

samples exhibiting smaller coercive fields [28].  The ultimate understanding of the high 

coercive fields may have to await measurements of domain walls and domain wall 

nucleation and growth. 

 

5.7  Néel Temperature 
 

In Chapter 4 the Néel temperatures are identified in the M(T) data in Figure 4.1 by the cusp 

in the susceptibility, and it was found to be about 165 K for all samples, with no 

discovered systematic variation with strain or other parameters.  This value lies below the 

result of TN = 178 K observed for bulk Dy and for c-axis-oriented thin films and 
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superlattices.  Further measurements presented in Figure 4.12 show that TN decreases with 

decreasing film thickness, with TN = 178 K, 172 K, and 165 K for 100 nm, 50 nm, and 7 nm 

thicknesses, respectively. 

 The Néel temperature in magnetic thin films have long been observed to decrease 

with decreasing thickness in this way [29].  In particular, this happens in polycrystalline Dy 

thin films [30], and in epitaxially-grown Er films and superlattices [12].  In the latter case, 

the magnitude of the effect (5 K) was less than that observed here for b-axis-oriented Dy (13 

K).  This effect has been studied theoretically for Ising films by Fisher [31],[32].  More 

generally, it is attributed to two causes: 1) the increased role of fluctuations or disorder as 

the dimensionality is reduced; and 2) the reduction in the volume defined by the magnetic 

coherence length. 

 One obvious mechanism for the reduction of magnetic coherence is reduced 

structural coherence.  This could be the result of roughness or interdiffusion.  While not 

entirely ruled out, neither effect is unlikely.  Regarding roughness:  AFM measurements 

shown in Figure 3.22 give surface roughness which are not unreasonable for epitaxial 

films.  Further, as reported in Chapter 3, the mosaicities of these samples are as low as 0.3º, 

comparable with many c-axis-oriented samples.  No change in TN was observed for b-axis-

oriented Dy samples of equal thickness despite changes of mosaic from 0.3º to 0.7º.  

Regarding interdiffusion:  First, the growth temperature was selected to specifically avoid 

interdiffusion.  Second, there was a wide variance in the times required for sample growth; 

early samples had six layers of Dy, but later samples were grown more quickly, and with 

only five layers.  Were the temperature near an interdiffusion threshold, the difference in 

growth times would appreciably affect TN, which was not observed.  Third, hysteresis 

loops showed clear evidence for near saturation at high applied fields, suggesting a 

minimum of Dy moments trapped at the interfaces. 

 It is possible that the observed reduction in TN, which is greater than seen in c-axis-

oriented Dy or Er, is due to a modification of the exchange coupling due to the finite 

thickness of the samples.  The connection between TN in bulk rare earths (neglecting 

anisotropy) and the exchange interaction J(Q) is [33], 
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The modification of J(Q) in thin film Dy has been discussed previously by Tsui [34].  For c-

axis-oriented Dy, the spatial form of J(R) stays the same as shown (see Chapter 1) for bulk 

rare earths.  For b-axis-oriented Dy, however, the exchange interaction along b becomes 
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The summation misses the peak in J(Q) along c, and this results in a further reduction of 

the RKKY interaction, in addition to its already short range. 

 Interestingly, further studies of b-axis-oriented rare earth thin films of varying 

thickness, including measurements of the AF periodicities, may eventually provide a 

useful way to study the length scale of magnetic coupling, particularly in the planar 

ferromagnets such as Dy, Tb, and Ho. 

 

5.8  The Possible Occurrence Quantum Tunneling 
 

Chapter 4 presents low-temperature magnetic viscosity measurements for two samples, 

one with compressive strain (ε11=-1.66%) and one with tensile strain (ε11=+0.89%).  The 

samples were cooled in zero field to a selected temperature, a 1 T field was applied, and 

magnetization data were collected as a function of time for up to seven hours thereafter.  

Two key observations were made:  1) the viscosity decreases with decreasing temperature 

until about 10 K, below which the viscosity is constant or slightly increasing, which 

identifies two temperature regimes with distinct kinetic processes; and 2) Tc
*   was found to 

be independent of strain. 

 Both the non-zero intercept at zero-temperature and the abrupt change in slope 

suggest that Tc
* = 10 K is a crossover temperature from thermal activation (TA) to quantum 
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tunneling (QTM).  For lower temperatures, the transitions between magnetic states may 

occur via quantum tunneling.  Interestingly, in 1971 Egami cited evidence for quantum 

tunneling of Bloch walls in Dy [35],[36].  There the magnetization rate of bulk Dy was 

studied in fields between 102 and 103 Oe and was found to be temperature-independent 

below 10 K; the data are shown as Figure 5.11. 

 Some factors cast doubt on this conclusion.  First, QTM has recently been observed 

in a number of systems, including simple magnets such as Fe(CO)5 and Tb0.5Ce0.5Fe2, 

magnetic multilayers of FeSm, DyCu, FeCu, and complicated, organic molecular magnets 

[37],[38],[39],[40],[41].  The present crossover temperature of Tc
* = 10 K is higher than that 

reported for these systems which are typically 3 K or much less [37]. 

 Second, with regard to the present results, the magnetic viscosity is not strictly 

temperature-independent below Tc
* , but in fact increases slightly with decreasing 

temperature.  Quantum tunneling processes may exhibit a weak temperature dependence, 

due to dissipation, but the usual dependence on temperature is the opposite of that 

observed [42],[43]. 

 Third, a detailed theory of domain wall tunneling in Dy followed the report by 

Egami.  The effective mass of a Bloch wall was calculated in the random-phase 

approximation, and the WKB formalism was used to obtain the tunneling rate [44].  The 

quantitative conclusion was that the crossover temperature to the tunneling regime should 

be 1 K, significantly less than observed. 

 An alternative to QTM is the possibility that the relaxation studies for b-axis-

oriented Dy have identified a new ordering process that is not well-studied in rare earth 

thin films.  Most studies involving Dy to date have focused on temperatures above 10 K, 

and recent reports using higher-purity Dy show phase behavior which differs significantly 

from previous measurements [15].  A recent article reports magnetic ordering in bulk Dy at 

4 K [45] in which Dy acquires a small component of magnetization along the [0001] axis.  

Since the temperature-dependence of the magnetoelastic constants in Dy are well-

understood, this process (if confirmed) is very difficult to understand. 
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 Conclusions drawn from the low temperature magnetic relaxation data may be 

summarized as follows.  Abrupt changes in ordering kinetics at 10 K in a 1 T field are 

observed in compressed and stretched b-axis-oriented Dy.  These agree with similar 

crossovers at 10 K observed by Egami in bulk Dy with smaller fields, establishing both that 

the mechanism is independent of strain and not strongly dependent on applied field 

below 1 T.  Current research in progress by C. Durfee may illuminate the nature of 

tunneling phenomena in the rare earths. 
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Figure 5.11.  The temperature and applied field dependence of the magnetization rate in bulk Dy.  After 
Reference [35].  Below 10 K, the rate is constant. 
 

5.9  Summary 
 

This Chapter provides interpretations of the results presented in Chapter 4.  The specific 

conclusions are as follows:  1) The observed dependence of the easy axis of magnetization 

on strain is reproduced by calculations of the anisotropy using the full magnetoelastic 

Hamiltonian.  2) The ferromagnetic/antiferromagnetic phase transition was studied using 

a phenomenological model with magnetoelastic parameters obtained from bulk Dy and 

applied to b-axis-oriented, c-axis-oriented and bulk Dy.  The driving energy favoring 
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ferromagnetism was found to vary linearly with strain.  A model which connects the Curie 

temperature linearly with driving energy was proposed.  A fit to measured TC using this 

model gave reasonable values of the parameters.  The behavior of both epitaxial and bulk 

Dy could thus be explained by a single model.  3) The measured coercive fields were 

examined and for the case of tensile strain, the coercive field strength is found to agree 

with the calculations of Egami.  Close examination of the Egami calculation suggests that 

domain wall pinning increases with increasing compressive strain.  4) The critical field HC 

is temperature-independent.  For bulk Dy, the temperature dependence of HC derives from 

the temperature dependence of the magnetocrystalline anisotropy constant, K6,6.  In the 

case of b-axis-oriented Dy, the additional effects of magnetoelastic coupling and shape 

anisotropy introduces large, temperature-independent additions.  5) The reduction in Néel 

temperature for b-axis-oriented Dy, and its systematic variation with strain may be caused 

by a reduction of the magnetic coherence length in the strongly-ordering (0001) planes that 

occurs in the b-axis-oriented geometry.  6) The change of magnetic relaxation data below 10 

K signifies a crossover between different regimes of magnetic ordering but the data do not 

establish whether or not this is quantum tunneling. 
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