
Computer Physics Communications 137 (2001) 300–311
www.elsevier.nl/locate/cpc

DataScan: An extensible program for image analysis in Java

K.A. Ritley a,∗, M. Schlesteinb, H. Doscha,b

a Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
b Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57, Universität Stuttgart, D-70550 Stuttgart, Germany

Received 15 November 2000; accepted 3 January 2001

Abstract

The ability to analyze the topography of two-dimensional images is essential for many applications in the physical, chemical,
and biological sciences. We describe a computer program to graphically display and perform numerical operations on large
two-dimensional arrays of double-precision numbers. It contains an intuitive graphical user interface, and it includes a suite
of useful image analysis and data reduction features. The program has been implemented in Java, a recent programming
language whose “write once, run anywhere” philosophy enables graphical capabilities without modification on a wide variety
of computers, operating systems and environments. DataScan has been optimized for ease of modification and extensibility,
to enable straightforward customization to perform new tasks or include new analysis options. Diverse applications including
X-ray and neutron diffraction, as well as microscopy are described. 2001 Elsevier Science B.V. All rights reserved.

PACS:02.30.Nw; 07.05-t; 07.05.Pj; 07.79.-v; 07.85.-m

Keywords:Image analysis; Java; STM; SPM; AFM; Fractal; Correlation; Fourier; GUI

PROGRAM SUMMARY

Title of program (32 characters maximum):DataScan

Catalogue identifier:ADOB

Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADOB

Program obtainable from:CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Computer for which the program is designed and others on which
it has been tested:Any computer which offers the Java Runtime
Environment (JRE), version 1.3 or later

* Corresponding author. Present address: Hewlett-Packard Con-
sulting, Posener Str. 1, D-71065 Sindelfingen, Germany.

E-mail address:kenneth_ritley@hp.com (K.A. Ritley).

Operating systems or monitors under which the program has been
tested: Windows95/98/NT, Tru64 Unix (v. 4.0F)

Programming language used:Java 2 (SDK 1.3)

Memory required to execute with typical data:Typically 2 Mb, plus
approximately 8 bytes per pixel of loaded image data

Number of bits in a word:8

Number of processors used:1

Has the code been vectorized or parallelized?no

Number of bytes in distributed program, including test data, etc.:
1 365 834

Distribution format: zip file

CPC Program Library subprograms used:none

0010-4655/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(01)00155-2



K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311 301

Keywords (descriptive of problem and method of solution):Image
analysis, linescans, convolution, filtering, scanning probe micros-
copy, atomic force microscopy, scanning tunneling microscopy, X-
ray/neutron diffraction, graphical user interface, Java

Nature of physical problem
DataScan provides a graphical user interface for performing image
analysis tasks and mathematical/logical operations on large (typi-
cally 500× 500 or 1000× 1000) arrays of double precision num-
bers. It includes basic image analysis tasks, sequential processing
of hundreds images, plus suites of routines useful for data reduction
in X-ray/neutron diffraction and scanning probe microscopy. New
routines may be easily included by the user.

Method of solution
The internal program section which defines the graphical user in-
terface (GUI) is clearly separated from program section which per-
forms image analysis tasks, to simplify adding new computational
extensions to the program. The use of the Java programming lan-

guage ensures portability between all operating systems and com-
puters which offer a Java Virtual Machine (JVM).

Restrictions on the complexity of the program
The number of images which can be loaded depends on available
machine memory, typically 8 bytes per pixel.

Typical running time
Execution times vary upon desired image processing tasks and size
of the image. A linescan requires less than 1 s for computation.
Convolution of a 1000× 1000 pixel image requires about 1 s on
a typical PC with a 266 MHz Pentium-II processor.

Unusual features of the program
The program is self-contained and portable. The image analysis fea-
tures are incorporated whenever possible in a library of independent,
standalone subroutines, so they may be re-used in other programs
and applications.

LONG WRITE-UP

1. Introduction

Image processing and analysis, or the mathematical
and logical manipulation of large two-dimensional
arrays of data, is a requirement with ever increasing
importance for many areas in the physical sciences.
For example, experimental techniques such as X-ray
and neutron diffraction, formerly dependent on single-
channel detectors yielding data in simplex-y plots
(count rate vs. detector position, for example) are
being increasingly supplanted with two-dimensional
detection systems such as CCD detectors, in which
the output is a real-time sequence of hundreds or
thousands of two-dimensional data sets. These data
are, quite literally, movies which describe a real-time
process, such as the oxidation of metal surfaces [1].
In many new techniques such as scanning probe
microscopy, two-dimensional data sets are obtained
directly but the measured data are contaminated by
various artifacts and noise, and image processing
is in all cases essential before these data can be
interpreted [2].

There are a number of commercial solutions to this
problem. Software products such as MathCad, PV-
WAVE, and IDL bundle a wealth of image processing

techniques with convenient user interfaces, and these
packages generally provide for user-written “macros”,
or internal programs, to enable new or repetitive
tasks [3]. There are significant drawbacks to using
such software, however. The mathematical routines
are generally “black-box” by design; that is, the source
code is proprietary and not available for user inspec-
tion or modification. The programs are costly, and they
may not be available on all desired platforms. To per-
form custom tasks, the user is forced to learn a specific
macro language, which hinders recycling of numerical
code and prevents easy leveraging of existing libraries
of scientific analysis routines. Finally, depending on
the program and the analysis needs of the user, impor-
tant image tasks simply may not be possible.

To circumvent these difficulties in our own re-
search, we have developed our own image analysis
software (DataScan). The design criteria were these:
(1) the program should be open-source software, so
that the source code can be freely inspected and
modified; (2) the program should be easy to modify,
that is, the source code should clearly separate the
language-specific graphical user interface (GUI) ele-
ments from the analysis routines, so that new analysis
features are easy to incorporate; (3) the GUI should be
powerful enough, with sufficient features, that users
can focus on incorporating new data analysis fea-
tures, rather than on technical details involving graph-



302 K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311

ics/windows/mouse/etc.; (4) the program should be
platform-independent, that is, it should produce the
same results on all computers and operating systems.
A final criterium included the incorporation of image
analysis tasks relevant to our research program, which
focuses on the reduction of two-dimensional data col-
lected in X-ray and neutron diffraction experiments,
and on image analysis for scanning probe microscopy.

This report describes the internal structure and fea-
tures of DataScan. It is organized as follows. First, we
briefly describe the “look-and-feel” of DataScan, and
we provide a list of the image analysis capabilities it
incorporates. We next discuss the internal structure of
the program, in sufficient detail to enable a new user,
knowledgeable in scientific programming practices, to
modify the program. Finally, we briefly discuss our ex-
periences with DataScan implemented on a variety of
platforms, from personal computers to high-end work-
stations.

2. Features for image analysis

2.1. Overview

DataScan is a program to display and perform nu-
merical analysis tasks on large two-dimensional ar-
rays (typically 500× 500 or 1000× 1000) of double-
precision numbers. These numbers may represent, for
example, the output from a measuring device (such as
a two-dimensional X-ray detector, scanning probe mi-
croscope, etc.), or they may be pixel intensities from
digitally scanned images. Although the requirement
for double-precision accuracy is infrequently realized
in the raw data acquired from experiments, its use im-
plies that subsequent mathematical operations can be
performed on the dataset with the maximum numer-
ical precision allowed by the Java programming lan-
guage.

2.2. “Look and feel”

DataScan GUI is based on the so-called multiple
document interface (MDI) model, in which there is
a parent frame which contains menu options and
toolbars; this parent frame is then populated with
various “child” frames, such as images, graphs, or
panels which contain image analysis options. A typical

screenshot of DataScan is shown in Fig. 1. All of
the image analysis and file handling features are
accessible from a menu bar; additionally, the most-
used features are accessible from buttons affixed to a
movable toolbar.

The child frames may be selected with the mouse,
moved, resized, iconized, and closed. There are five
types of child frames:

(1) ImageDataFrame, the principal frame which is
used for displaying two-dimensional arrays of double-
precision numbers. Although internally stored in
double-precision format, the data arrays are graphi-
cally displayed as pixels with grayscale intensity val-
ues between 0 and 255; color “look-up tables” can be
used to display the image in false color format, or to
enable contrast adjustment. The mouse can be used
to select regions-of-interest (such as linescans, area
scans, point selection, etc.) as well as to display lo-
cal image information (x andy pixel coordinates, and
intensity). Scroll-bars appear when the image size in
pixels exceeds the size of the child frame.

(2) ImageFrame, used for displaying simple color
images obtained from binary data files in standard
formats (GIF, JPG, BMP, etc.). Although the color
data represented in an ImageFrame cannot be analyzed
with the other DataScan analysis options, the Image-
Frame contains menu items for conversion of the im-
age to internal double-precision data arrays, for exam-
ple, by separation of the color channels (RGB, CMY,
etc.), by extraction of hue, saturation, and brightness
levels, etc. These channels can then be displayed in
ImageDataFrames.

(3)PlotFrame, used for displaying simplex-y plots.
The mouse can be used to selected coordinates from
the graph, and menu options are provided for saving
the displayed data to ASCII files.

(4) HelpFrame, used for displaying context sensi-
tive help information. The help files are written in hy-
pertext markup language (HTML) format. The appro-
priate help files are displayed by clicking on a button
located in each analysis frame (see below).

(5) AnalysisFrames, used for providing the user
with a choice of image analysis features. There are
over 10 separate analysis frames, each providing
a set of related image analysis options, discussed
below. The analysis options are applied to a user-
selected dataset, which is mouse-selectable from box
in the upper-left-hand corner of the AnalysisFrame



K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311 303

Fig. 1. A typical “screen shot” of the DataScan MDI, showing an example of each type of available frame. Clockwise from upper left:
ImageFrame, HelpFrame, ImageDataFrame, AnalysisFrame, and PlotFrame.

(see Fig. 1). A help button displays a context-sensitive
HelpFrame.

2.3. List of image analysis options

A complete list of the AnalysisFrames appears in
Table 1, and we briefly comment on several of the most
important analysis options herewith. Many of these
features have widespread application to general im-
age analysis problems (such as filtering and convolu-
tion), but a large number of features have been incor-
porated to assist in data analysis for X-ray/neutron dif-
fraction experiments (such as batch processing and in-
tegration options) and for scanning probe microscopy
(background subtraction and fractal surface analysis).

2.3.1. EditFrame
This frame contains a set of options to change the

numerical values of the pixels in data array. Some
basic operations (assigned to “buttons”) include the
application of basic mathematical operations, such
as absolute value, logarithm, deviation from the im-
age mean, etc. Additionally, DataScan includes a
recursive-descent mathematical equation parser [4],
so that user-input strings (such as “sin(x)” or “PI-
tan(log(x))” can be applied to the elements of the ar-
ray. Arithmetical operations between pairs of images
are possible, such as addition or subtraction of two im-
ages.

DataScan incorporates various features for image
background subtraction, which is of special impor-



304 K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311

Table 1
The classes which comprise DataScan, and the principal tasks they accomplish. Multiple instances of each class are allowed, but the Utils
classes (UtilsFile, UtilsImage, UtilsParser) serve as libraries for static class methods and no instantiation is normally required

Class Function

HelpFrame display context-sensitive HTML help files

ImageFrame display common image formats (GIF, JPG, etc.)

ImageDataFrame display stored 2D double-precision arrays

PlotFrame display(x, y) scientific graphs

DigitizationFrame digitize points from displayed images

EditFrame mathematical/logical manipulation of data arrays, background subtraction options

FileFrame read and write various file formats

FilterFrame perform filtering operations (discrete and Fourier space methods)

FractalFrame computation of fractal properties of surfaces

InformationFrame display stored dataset information, contrast adjustment

LinescanFrame perform various linescan and sectioning operations

ProcessFrame enable sequential batch-mode processing of large numbers of images

TopographyFrame roughness characterization, thresholding operations

ImageClass singleton class which makes image/dataset parameters available globally

UtilsFile independent subroutines for reading and writing various file formats

UtilsImage independent subroutines for mathematical manipulation of images

UtilsMisc independent subroutines for assorted mathematical tasks (e.g., least squares fitting)

UtilsParser a recursive-descent mathematical equation parser

tance for the analysis of scanning probe microscopy
data [2]. In this experimental technique, a piezoelec-
trically-controlled probe is rastered line by line across
a rectangular region of a surface. Interactions be-
tween the probe and the surface (e.g., electrical cur-
rent, magnetic field gradients, or force) are mea-
sured to produce images of the surface. The mea-
sured data contain various artifacts which must be
subtracted prior to data analysis: due to sample mis-
alignment in the instrument, the data contain a lin-
ear background contribution; due to the line-by-line
rastering, data points within a line may be smooth
but successive scan lines may be linearly offset; and
due to nonlinearities in the piezoelectric scanners,
the data may be superimposed on a quadratic or
higher-order polynomial background. The EditFrame
includes features to perform these artifact removal
tasks.

2.3.2. TopographyFrame
This frame contains features to perform topograph-

ical image analysis. These assume that each pixel in
the two-dimensional dataset represents the height of a
surface. Of special relevance for scanning probe mi-
croscopy applications, scalar quantities such as rough-
ness (RA, RRMS, etc.) can be computed, and there
are thresholding operations to compute the fraction
of the surface area which falls between user-specified
heights.

Several interesting histogram options are provided,
including local-slope histograms [5]. As shown in
Fig. 3, a local-slope histogram is a two-dimensional
statistical distribution of facet angles on a surface; it
is an invaluable tool in scanning probe microscopy ap-
plications for the characterization of facetted surfaces.

Extensive features for peak and valley determi-
nation are also included. The dataset (or mouse-



K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311 305

Fig. 2. A real-time X-ray diffraction experiment to investigate the real-time growth of a CoGa oxide was performed at Beamline ID32 at the
European Synchrotron Radiation Facility [1]. A collimated beam of monoenergetic X-rays was diffracted from structural periodicities at the
surface the sample, and the diffracted radiation was then detected using a two-dimensional detector at an approximate rate of one image per
second during the oxidation process. (a) A typical image acquired during the experiment. Data analysis in these experiments involves careful
integration of the specular and diffuse features, repeated for each sequence of hundreds of images, using linescan and integration options
provided by the LinescanFrame and ProcessingFrame in DataScan. (b, open circles) A conventional linescan (solid line in (a)) misses a portion
of the diffusively-scattered intensity; (b, solid circles) a linescan which integrates between dotted lines in (a), showing increased signal height
above the background intensity. The solid curves in (b) are guides to the eye.

selectable subregions) can be searched for an arbitrary
number of peaks and valleys. A peak/valley search
may also be performed on the dataset row-by-row or
column-by-column; this information can be used in
combination with other image analysis tasks, as dis-
cussed in Section 2.3.8.

2.3.3. DigitizationFrame
This analysis frame is used with the mouse to

select a list of points (x and y coordinates, and
intensity) from a dataset. One important non-scientific
application is the “stealing” of data from published
scientific graphs: Scientific plots from journals and
magazines may be scanned or otherwise obtained in
digital format (GIF, JPG, etc.); these files are then read
by DataScan, converted to a dataset, and coordinates
of the plotted points can be selected and saved to a
file. Additionally, this frame provides the capability
for user calibration of the physical size of the image:
the user selects points on the image, inputs the known

separation of these points in physical coordinates,
and the overall physical coordinates of the image are
appropriately recalibrated.

2.3.4. LinescanFrame
The features in this analysis frame are used with the

mouse to produce(x, y) graphs corresponding to lin-
ear slices through the data array. In general a user-
selected line will not pass directly through the data
points; a variety of interpolation features to handle this
problem are possible. In addition to simple linescan
features, two-dimensional “integrated” linescans are
also possible. These are of importance to data analy-
sis in X-ray and neutron diffraction experiments, as
shown in Fig. 2. A two-dimensional detector collects
the intensity of X-ray or neutron radiation diffracted
from a sample. The “specular” intensity which appears
along a linear portion of the detector derives from ra-
diation which diffracts from perfectly-ideal periodici-
ties within the sample; this must be compared with the



306 K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311

Fig. 3. (a) An atomic force microscopy image (1500 nm×1500 nm) of a facetted sapphire surface. (b) A two-dimensional local slope histogram
of this surface, where the upper right-hand coordinate represents (0◦, 0◦) and the lower-left-hand coordinate represents (180◦ , 180◦). (c) The
integration of the columns of the local slope histogram, in order to quantitatively show the distribution of facet angles on the surface. The fit is to
show the deviation from a Gaussian distribution. It is apparent from this analysis that the facet surface with the shallowest angle (approximately
18◦) has a higher probability of occurance, as expected from obvious geometrical arguments.

“diffuse” intensity in the region adjacent to the spec-
ular region, which derives from radiation scattered by
roughness or inhomogeneities in the sample.

2.3.5. ProcessingFrame
This frame provides the capability to apply selected

linescan and region-of-interest operations sequentially
to a large number of datasets. The list of datasets to se-
quentially analyze is read from an ASCII file; in turn,
each dataset contained in this list is opened and ana-
lyzed. In this way, a large collection of dozens or hun-
dreds of datasets may be sequentially analyzed. This is
of particular importance in recent X-ray and neutron
scattering applications, in which hundreds or thou-
sands of images are collected during the measurement
of a real-time process, such as the oxidation of a sam-
ple [1] or during a structural phase transition [6]. Two
types of ASCII datafiles are produced:ROI datafiles,
in which each row in the file contains information
(maximum and minimum intensity of the region, etc.)
about a selected region-of-interest for each successive
image in the series; andlinescan datafiles, in which

each column in the file contains a linescan (many types
of linescans are possible) for each successive image in
the series.

2.3.6. FractalFrame
This frame provides a several methods to calculate

the fractal and self-similarity properties of surfaces.
As discussed in Ref. [7], a precise mathematical
definition of these terms is complex, but they can
be qualitatively understood as the degree to which
a surface “spreads out” into three dimensions. This
analysis frame includes a calculation of the fractal
(Hausdorf) dimension using Minkowski cover and
RMS vs. area algorithms [7].

Additionally, several calculations of the height-
height distribution functions are also included. Unlike
scalar measurements of surface roughness (such as
the RMS roughness and other quantities calculated
by the TopographyFrame), these functions provide
information about the length scales over which the
surface roughness approaches its saturation value [8].



K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311 307

The radial height-differenceg and height-height
C distribution functions are defined as

g(R − R′) = 〈
(h(R) − h(R′))2〉 (1)

and

C(R − R′) = 〈
h(R)h(R′)

〉
, (2)

whereh(R), h(R′) denote the surface height (image
intensity) at two-points on the surfaceR, R′, and
〈· · ·〉 denotes an average over the entire surface. The
calculation of these quantities are performed using
a Monte Carlo algorithm, to permit user-control over
the accuracy and computation time [9]. Additionally,
a routine to compute the two-dimensional height–
height correlation functionf

f (x − x ′, y − y ′) = 〈
h(x, y)h(x ′, y ′)

〉
(3)

is also available [10]. This routine uses all data points
in the image; for anM ×N image,M ×N ×(M −1)×
(N − 1) evaluations are necessary and the calculation
may require several minutes.

2.3.7. FilterFrame
This frame provides extensive capabilities for im-

age filtering, convolution, and Fourier transformation.
This section briefly lists the filtering capabilities of
DataScan; detailed information about filtering can be
found, for example, in Ref. [11].

Discrete filtering is a powerful image analysis
technique based on discrete convolution of the image
with a so-called filter kernel. The convolutionh of two
continuous functionsf andk is defined by

h(x) = f (x) ∗ k(x) =
+∞∫

−∞
f (t)k(x − t)dt, (4)

wherek is known as the filter kernel, and the integral
need only be performed wherek(x − t) is non-zero.
For a discrete two-dimensional function, such as an
image, Eq. (4) can be extended to

H [x][y] =
height−1∑

j=0

width−1∑
i=0

F [x + i][y + j ]K[i][j ].

(5)

Depending on the choice of the filter kernel, extensive
capabilities for manipulation of the image are possi-
ble. DataScan includes over 20 separate 3× 3 and

5× 5 kernels, including kernels for line detection (all
directions), gradient detection (embossing), smooth-
ing, blurring, as well as high-pass and low-pass filters.
Soebel edge detection, based on successive applica-
tion of horizontal and vertical edge detection kernels,
is also included. Additionally, DataScan incorporates
a convenient array-like GUI for kernel selection and
modification, to make it easy for the user to inspect
existing kernels or else construct new kernels.

DataScan also includes two-dimensional Fourier
transform capabilities. A wide variety of image analy-
sis techniques, including frequency-space filtering,
autocorrelation, and shape determination are based
Fourier transformation techniques. Given a discrete
two-dimensional functionf defined over the two-
dimensional grid 0� k1 � N1 − 1,0 � k2 � N2, the
Fourier transformH of f can be written

H(n1, n2) =
N2−1∑
k2=0

N1−1∑
k1=0

exp(2π ik2n2/N2)

× exp(2π ik1n1/N1)f (k1, k2). (6)

DataScan uses a Java modification of the well-es-
tablished Danielson–Lanczos algorithm to efficiently
compute the real and complex parts of the discrete
Fourier transform of an image [12].

2.3.8. Cross-frame capabilities
Because the output of many of the image analysis

frames are available globally within DataScan, more
exotic image analysis tasks may frequently be accom-
plished by a employing a combination or succession
of options from various analysis frames. We provide
three simple examples.Island size analysis. Island
size analysis is an important task in scanning probe
microscopy applications; by using a combination of
TopographyFrame, EditFrame and DigitizationFrame
features, thresholding features may be used to cleanly
isolate surface islands, which then may be quantita-
tively analyzed.Peak tracking. This example concerns
the analysis of data collected by position-sensitive de-
tectors (PSD) in X-ray diffraction experiments: in this
case, each row in a two-dimensional image may con-
tain the detection channels from a PSD, where suc-
cessive rows are measured at different times [13]. The
row-wise or column-wise peak finding capabilities
provided by the TopographyFramecan be used to track
the motion of diffraction peaks in the spatial- or time-



308 K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311

coordinates, and the intensity information may sub-
sequently be accessed, plotted or exported using fea-
tures provided by the DigitizationFrame.Local slope
histograms. The statistical analysis of surface facets
is an important task for scanning probe microscopy
experiments. A typical example appears in Fig. 3(a),
which shows an atomic force microscopy (AFM) im-
age of an epitaxially-polished(1010) α-Al2O3 sap-
phire surface. This surface is unstable, and upon heat-
ing in air to over 1400◦C, the surface spontaneously
develops{1011} and {1012} facets. The statistical
analysis of the facet angles can be accomplished by
means of a local slope histogram, a feature imple-
mented on the TopographyFrame which calculates a
two-dimensional histogram of the local slopes across
the surface (Fig. 3(b)). For quantitative analysis the
local slopes in the separatex- andy-directions, it is
useful to integrate the LSH image along the rows and
columns (Fig. 3(c)), using features provided by the
LinescanFrame.

3. Internal program structure

3.1. The Java programming language

The aforementioned design criteria were met in
every case by using the programming language Java.
Developed by the Sun Computer Corp. in 1995, Java
is a modern, object-oriented programming language
with a syntax nearly identical to that of C/C++. It
contains extensive (literally, hundreds) of features for
GUI development. Platform independence is achieved
by program interpretation, rather than compilation.
Java source code is compiled to produce files of “byte-
codes”, or machine-independent instructions for the
Java Virtual Machine (JVM), a platform-dependent
pseudo-compiler which translates the byte-codes to
machine-language instructions during run-time. Since
JVMs are standardized and available for a wide variety
of computers and operating systems, the same source
code can be guaranteed to run the same way under all
JVMs, without regard to platform or environment.

An additional advantage of Java is the inclusion
of tools (Javadoc) to automatically generate user-
friendly, standardized, HTML-based internal program
documentation. This is of enormous importance for
users who wish to extend the capabilities of DataScan;

in every case, these features have been employed
to copiously document DataScan, to simplify the
program modification process.

DataScan has been developed using the Forte-
For-Java interactive development environment (IDE),
written and distributed free-of-charge by the Sun
Computer Corp. Its features greatly facilitate the
construction of GUIs in Java. However, this IDE is not
a requirement for modifying DataScan. The DataScan
code can be modified with any text editor, and it can
be compiled with any compiler that supports the Java
2 (SDK 1.3) specification.

3.2. Program structure

To facilitate rapid and easy modification of the
program to accomplish new tasks, DataScan has been
internally divided into an object-oriented GUI section,
which handles non-scientific programming tasks, such
image display and mouse handling (for linescans,
sub-area selection, etc.); and a procedurally-oriented
mathematical section, in which the image data is easily
accessed and numerical operations can be performed.
The following sections describe the internal program
structure in greater detail.

3.2.1. GUI section
The user-interface section makes use of the exten-

sive object-oriented capabilities of Java for GUI devel-
opment. The Java Swing classes are used to construct
the multiple document interface (MDI). The main pro-
gram module implements the JDesktop class, and this
can be populated by the five aforementioned types
of classes, each of which extends the JInternalFrame
class. These classes are labeled with the word Frame
by convention: ImageDataFrame, ImageFrame, Plot-
Frame, HelpFrame, and AnalysisFrames.

The graphical display of the images is achieved
within each ImageDataFrame by means of the
BufferedImage class. While this entails increased
memory cost (i.e., double precision arrays are used
to store the datasets, while parallel to this a scaled
(0–255) representation of the data is stored in the raster
which belongs to each instance of a BufferedImage),
the need for fast graphical updating capabilities re-
quires the use of BufferedImages, for example, for
quickly updating the image, selection of linescans and
regions-of-interest with the mouse, etc.



K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311 309

3.2.2. Numerical analysis section
The numerically-intensive section is procedurally

structured rather than object-oriented. Several classes
(labeled with the word Utils by convention: Util-
sImage, UtilsFile, UtilsMisc, UtilsParser) serve as li-
braries for independent subroutines (or static class
methods) for performing specific image analysis tasks.
Examples of these tasks include linear least squares fit-
ting for background subtraction, fast Fourier transfor-
mation, discrete convolution with a variety of kernels,
resizing the image via interpolation, etc. These rou-
tines are invoked from specific AnalysisFrames; addi-
tionally, they are well-documented and available for
use in user extensions or modifications to DataScan
(see Section 3.3).

3.2.3. Global variables
Java does not support global variables, which is

somewhat contrary to the standard procedural par-
adigm (e.g., Fortran) generally employed for scien-
tific programming. Although this offers advantages
(such as “data-hiding” to prevent misuse of variables
in complicated programs) it can lead to unnecessary
complication, particularly for scientific applications
in many variables must be shared widely through-
out the program. DataScan implements an efficient,
object-oriented solution to this problem, known as the
Singleton model for global variable storage [14]. In
this model, the variables which have global scope are
stored as statically-declared class variables in a single
class (ImageClass), which is accessible by all other
classes within the program. Use of the “static” key-

Fig. 4. An example of a typical user-written subroutine, in order to incorporate a new image analysis feature in DataScan. The specific
instructions are discussed in the text.



310 K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311

word ensures that only one instance of each variable is
created. This offers advantages for rapid expansion or
modification of DataScan to accomplish new tasks.

The datasets are stored as two-dimensional arrays of
double-precision numbers, which in Java corresponds
to a 64-bit implementation of the IEEE-754 standard.
These arrays are allocated dynamically as needed dur-
ing execution, and the size of each array is individ-
ually specified, to conserve required memory. In con-
trast to programming languages such as C++, in which
memory allocation/deallocation is controlled directly
by the programmer, Java allocates storage space when
needed and handles memory deallocation by “garbage
collection”, a process running in parallel to the pro-
gram, at low-priority, which deallocates memory be-
longing to variables with no active references. DataS-
can provides options for the user to start a garbage col-
lection thread, as well as to display available and oc-
cupied memory.

3.3. Extending/modifying DataScan

To incorporate additional calculations into DataS-
can, some knowledge of Java programming is obvi-
ously required. But because the image handling and
GUI aspects of the program are well-separated from
the numerical analysis section, knowledge of C/C++
syntax is usually sufficient. An example of a user-
written subroutine appears in Fig. 4. The first in-
struction (line 2) declares and creates and instance
of the global Singleton image class (ImageClass),
which makes information about all the images avail-
able within the subroutine. The first method invocation
(line 3) tests whether any images are currently loaded.
If one or more images are loaded, then the last image
which was “activated” (either by virtue of most recent
construction or else by mouse-clicking on the image)
is the default image, upon which all methods in the im-
age class will operate. Subsequent lines (lines 4 and 5)
show useful methods which return information about
the image, as well as a method which returns the dou-
ble precision data array itself (line 6). There are addi-
tional methods (not shown) which return information
about linescans, regions-of-interest, or digitized points
the user has selected on the image. The user is free
to perform whatever image operations are necessary
(line 8). Finally, the user may store the new dataset
(line 9) and display the image on the desktop (line 12).

Additional methods can be invoked, for example, to
store parameters such as image size in physical units
(line 10) or to specify the displayed interleave factor
(line 11), useful for images otherwise too large to fit
the display screen. A complete and well-documented
list of publicly-declared static variables and methods
is available within the on-line documentation.

4. Performance and summary

DataScan has been tested on a number of ma-
chines and operating systems, including PCs running
the Microsoft Windows95/98/NT operating systems,
and a Compac DS20E Alphaserver running True64
Unix (ver. 4.0F). It has also been run remotely across
X-Windows-type interfaces with Linux systems and
Sun Solaris-based workstations. Despite the Java Vir-
tual Machine performing program interpretation rather
than highly-optimized compilation, in all cases exe-
cution speed was more than adequate for perform-
ing the desired image processing tasks. Additionally,
we verified the platform-independent “look-and-feel”
promised by Java; although there were several small
differences, such as the design of the window borders,
in no cases was the GUI functionality of DataScan hin-
dered or impaired.

DataScan has been used in collaboration with
R. Streitel and A. Stierle to analyze X-ray diffrac-
tion data collected during a metal oxidation experi-
ment at Beamline ID32 of the European Synchrotron
Radiation Facility (ESRF) in Grenoble, France [1]. In
this experiment, clean, oxide-free surfaces of a high-
quality CoGa sample were allowed to oxidize un-
der carefully controlled conditions, at temperatures up
to 500◦C. X-ray diffraction measurements were per-
formed in situ during the oxidation process, in order
to study the crystal structure of the growing oxide sur-
face. Diffraction data were collected using a Siemens
two-dimensional wire detector, which typically gener-
ated sequences of 100–200 images, each with 1024×
1024 pixels, 16 bits per pixel, one image per second.
The data analysis for this experiment involves using
the DataScan ProcessFrame to perform an established
set of topographical operations (linescans, region-of-
interest analysis, peak position, etc.) in exactly the
same way for each image. Using a PC with a Pentium
II/400 processor with 512 Mb of memory and the Win-



K.A. Ritley et al. / Computer Physics Communications 137 (2001) 300–311 311

dowsNT (v. 4.0) operating system, a total time of less
than two minutes is typically required for DataScan to
read each of over 100 images, perform the necessary
analysis, and write the results to an output file.

In summary, we have used Java to develop a plat-
form-independent package (DataScan) with an intu-
itive GUI to display and perform numerical oper-
ations on large two-dimensional arrays of double-
precision numbers. It includes a suite of analysis rou-
tines to perform common image analysis tasks, rou-
tines to perform specific tasks relevant to problems
in X-ray/neutron diffraction and scanning probe mi-
croscopy, and routines to enable batch processing for
automating the processing of large numbers of images.
To simplify user modifications to DataScan, the inter-
nal program structure has been divided into a object-
oriented section which implements the GUI, and a
procedural-oriented section which implements the nu-
merical calculations. DataScan has been tested and
found to give good performance on a wide variety of
computers and operating systems.

Acknowledgements

We thank B. Gliss for useful discussions regard-
ing Java. We thank D.G. Cahill, N. Funk, M. Huth,
J. O’Kane and D. Zhong for important contribu-
tions to the calculations, and V. Kruppa, W. Don-
ner, V. Kruppa, A. Rühm, F. Schreiber, A. Stierle and
R. Streitel for useful discussions.

References

[1] A. Stierle, R. Streitel, private communication.
[2] S. Magonov, M.-H. Whangbo, Surface Analysis with STM and

AFM, VCH, Weinheim, 1996.
[3] PV-WAVE is a product from Visual Numerics, Inc., 1300 W.

Sam Houston Pkwy S., Suite 150, Houston, Texas 77042,
USA; MathCad is a product from MathSoft, Inc., 101 Main
Street, Cambridge, MA 02142, USA; IDL is a product from
Research Systems, Inc., 4990 Pearl East Circle, Boulder, CO
80301, USA.

[4] N. Funk, private communication.
[5] J.E. van Nostrand, D.G. Cahill, I. Petrov, J.E. Green, J. App.

Phys. 83 (1998) 1096–1102.
[6] M. Linde, J. Trenkler, V. Bugaev, Y. Sikula, K. Du, F. Phillipp,

H. Dosch, Science (submitted).
[7] J.C. Russ, Fractal Surfaces, Plenum, New York, 1994.
[8] H.-N. Yang, Y.-P. Zhao, A. Chan, T.-M. Lu, G.-C. Wang, Phys.

Rev. B 56 (1997) 4224–4232.
[9] J.E. van Nostrand, D.G. Cahill, I. Petrov, J.E. Green, J. App.

Phys. 83 (1998) 1096–1102.
[10] R.C. Munoz, G. Vidal, M. Mulsow, J.G. Lisoni, C. Arenas,

A. Concha, F. Mora, R. Espejo, G. Kremer, L. Moraga, R.
Esparza, P. Haberle, Phys. Rev. B 62 (2000) 4686–4697.

[11] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer
Graphics: Principles and Practice, Addison-Wesley, Reading,
MA, 1990.

[12] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical Recipes in C, Cambridge Univ. Press, Cambridge,
1992.

[13] H. Dosch, Critical phenomena at surfaces and interfaces,
Springer Tracts in Modern Phys. 126 (1992).

[14] E. Gamma, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, MA, 1997.


