
This article was published in 2000, in Gamelan

Scientific Computing in Java (Part 2): Writing Scientific Programs in Java
By Ken Ritley

We live in a technological world, at the heart of which are scientists and engineers. They need programming tools to
help make important discoveries and bring the next generation of technology to market.

Part 1 of this article discussed how scientists can benefit from Java. We've said that despite a few pitfalls which
scientists should watch out for, the future of Java as a scientific programming language looks bright. Here in Part II
we examine the structure of a scientific program more closely. We'll define a few scientific OOP design patterns in
Java, and we'll give you a short style guide that can help scientists write good Java programs (please see the sidebar
"A Style Guide for Scientific Programs in Java").

A Style Guide for Scientific Programs in Java

The Golden Rule of Programming states that
computer programs should be understandable by
the people who write and maintain them. But
what's good programming practice for business
is not necessarily what's good for science.

Here are some ideas scientists can use for
making Java programs more readable and easier
to maintain.

Translating Formulas to Source Code

1. Use short variable names like e, m and c, to
mirror the variables which appear in the
original equations.

Clearly e = m*c*c; is much easier to compare
with the original equation and debug than
energy=mass*speedOfLight*speedOfLight;.

2. Hungarian notation in Java can be helpful.

It's not necessary to precede every variable with
a letter which indicates its type: d=double,
i=integer, etc. But because Java convention is to
start variable names with lowercase letters,
sometimes Hungarian notation can be more
aesthetically pleasing, especially for loop
control variables; for example
iNumberOfElectrons vs.
numberOfElectrons. It also helps make clear
when a seemingly integer-like variable has been
converted to a different type, as in double
dNumberOfElectrons = (double)
iNumberOfElectrons;.

3. Use descriptive variable names for
controlling loops and all other variables.

http://www.internet.com/
mailto:feedback@internet.com
http://www.earthweb.com/dlink.resource-jhtml.72.1061.%7Crepository%7C%7Ccommon%7Ccontent%7Carticle%7C19990908%7Cgm_hung1%7Chung1~xml.0.jhtml?cda=true

Remember when looking through source code,
loops are what the eye sees first. It's important
that the physical meaning of the loop be clear.
For example,

// Eq. (5) Loop over all electrons
for (i = 0; i < iNumberOfElectrons; i++)
E[i] = m[i]*c*c;

4. When coding an equation which appears in
a journal article, always cite both the article
and the equation number.

For example, at the beginning of the method you
may type // Einstein, Ann. Phys. 17, 891-
921 (1905) Later on in the code, it only takes a
few extra seconds to type // Eq. (5).
Frequently overlooked, this simple rule will
save enormous time and grief, both for you and
for someone trying to understand your program.

5. Break up complicated equations to
enhance their readability, but make your
intermediate, temporary variable names
clear.

The variable names numer and denom make it
instantly clear that you've broken the formula up
into a temporary numerator and denominator:

// Eq. (5) Loop over all electrons
numer = 1.0 - v*v/c/c;
denom = 1.0 - v/c;
vp = Math.sqr(numer/denom);

Java-Specific Advice

1. It's easier to share numerical methods than
numerical classes or packages.

Especially if you are new to Java, it may be fun
to implement a Java-intensive, object-oriented
solution to a purely numerical problem -
something involving a package with inherited
classes and Java-specific features such as
Hashtables. For truly massive projects or
scientific libraries, this may be an ideal solution.
Your source code may be elegant and efficient.

But for future scientists who wish to borrow
only small pieces of your numerical ideas, it
may be a nightmare to dissect object-oriented

numerical packages. And what's the sense of
importing a massive library when only a single
method may be needed? Try to write portable,
static methods first, then classes if necessary,
and finally packages if absolutely necessary
after that.

2. If dedicated classes store global variables,
preface their names with Global. If dedicated
classes are used as libraries of easily-shared
methods, preface their names with Utils.

It's a clever idea because it not only reminds you
of what's in the class - it also ensures that the
HTML files created by javadoc will all be
grouped together. Some examples might include
GlobalEnergyVariables, UtilsFile,
GlobalAntimatter or UtilsImageProcessing.

3. When necessary, port Fortran source code
rather than C source code to Java.

Java's syntax most nearly resembles C, but Java
does not support pointers - and finding scientific
subroutines in C without pointers is nearly
impossible.

4. Interfaces are great for numerical
constants.

With interfaces you'll have to type in each of
your constants (like pi, pi/2, pi*pi), but since
interfaces are easy to recycle, you'll only need to
type them in once!

5. Don't forget System.out.println and the
Console.

It's tempting to invoke the Java Virtual Machine
with javaw, but don't forget that the standard
console is a handy place to see error messages
and liberally-sprinkled System.out.println
comments. Since Java protects itself so well
against errors which would be fatal in Fortran or
C, it's important to see possible error messages
when they are generated, or else you might not
realize they are there! If you want to get fancy,
there are even good ways to implement your
own custom console.

— K. R.

Don't OOP? Don't Worry!

http://www.earthweb.com/earthweb/cda/dlink.resource-jhtml.72.1082.%7Crepository%7C%7Csoftwaredev%7Ccontent%7Carticle%7C2000%7C12%7C13%7CSDtravisconsole%7CSDtravisconsole~xml.43.jhtml?cda=true

Since the real world is composed of objects related in complex ways, object-oriented strategies are often the best
solution to programming problems. One reason for Java's success is that it simplifies OOP development.

However, many scientific problems are not amenable to full-blown object-oriented treatments. The problem may be
too simple, such as evaluating an equation. Or sometimes the relationship between objects is just too complex. For
example, a very simple equation describes how the moon orbits the earth, but add a third object to the problem (such
as the sun or a comet or an asteroid) and the resulting equations can be so intertwined and complex that entirely
different calculational techniques become necessary.

Nevertheless, OOP principles can be valuable for scientific programming, and increasing numbers of scientific
programmers are now learning to think in OOP terms. For the scientist new to Java, the first lesson to learn is this: the
classes are where it's at.

Classes: The Heart of Scientific Programs

Coming from a traditional Fortran or C background, it's easy to look at methods in Java and assume they are like
functions or subroutines. They're not. For scientific programming, Java methods are weaker than their Fortran or C
counterparts. A scientist expects to invoke a subroutine with a long argument list containing lots of variables, then to
have those variables updated and changed upon return.

In Java, variables can be passed into methods (passing by value), but at most only one of them can be changed, such
as via a function: x=myMethod(a,b,c,x);. Of course, groups of variables can be stored in arrays, and methods can
change the contents of arrays (passing by reference). But cheating with variable-arrays is rarely an elegant approach.

This is not a shortcoming of Java — in fact, it's an improvement over Fortran and C! The Java solution is elegant:
construct a class and feed it the necessary variables a, b, and c, then provide either public variables or else public
methods which return x, like this:

MyCalc mc = new MyCalc(a,b,c);
x = mc.x; // or, alternatively . . .
x = mc.getX();

Java ends endless parameter lists, in which it is never clear which variables stay fixed and which are changed; and
Java prohibits pointers — no comment necessary! And as this example shows, the Java code for such classes is clean
and concise, and above all, the programmer's intent is crystal clear (Please see the sidebar "Converting Scientific
Subroutines to Scientific Classes").

Converting Scientific Subroutines to Scientific Classes

Subroutines are the building blocks of scientific programs in
Fortran and C. They're portable and easy to re-use. But they're
not without problems, because it's frequently unclear which of
the variables stay fixed and which are changed. And as the
needs of the programmer change, and as more features become
necessary, subroutines quickly become unreadable spaghetti-
style code.

A typical Fortran subroutine might look like this:

 SUBROUTINE root (a,b,c,root1,root2)
c Which input parameters are changed?
 real*8 a, b, c, root1, root2, disc
 disc = b*b - 4.*a*c
 root1 = (-b + DSQR(disc))/2./a
 root2 = (-b - DSQR(disc))/2./a
 return

 end

Java classes provide a better way. The input and output
parameters are easy to see. Variables can be protected, to
prevent inadvertly changing their values. And best of all, a
finished class is a file in its own right, complete with useful
HTML comments (courtesy of javadoc) - ready to be shared
with colleagues and recycled in many different programs!

It's easy to convert this Fortran subroutine to a Java class:

/** Solve a quadratic equation, a*x^2+b*c+c=0
public class QuadraticEquationSolver {
 private double root1, root2;
 /** Initialize the parameters
 public void setup (double a, double b, double c) {
 double disc = b*b - 4.*a*c;
 root1 = (-b + Math.sqrt(disc))/2./a;
 root2 = (-b - Math.sqrt(disc))/2./a;
 }
 /** Returns the "+" root
 public double getPosRoot() { return root1; }
 /** Returns the "-" root
 public double getNegRoot() { return root2; }
}

A few extra lines of code may be necessary, but the
programmer's intent is crystal clear, and useful HTML
documentation is automatic. The use of the setup method
ensures the class can be reused many times (for example,
within a loop) without multiple instantiation. And new
methods can be added (such as for mimicking Fortran
functions) without changing the code which performs the
calculation. Further, the code can be easily modified, perhaps
adding an isThereASolution method - or possibly, by
following the Java convention of returning a -1 when the
desired operations could not be performed.

— K. R.

Handling Global Variables in Java

A scientific program is about numbers, not (necessarily) about interrelationships between inherited classes or objects.
So numerical variables — sometimes many dozens of them — must be easy to group and share between sections of
the program. Fortran originally provided a pre- object-oriented tool for this task, the named common statement: global
variables were easy to share, but it required significant programmer overhead to ensure appropriate typing and
dimensioning.

Java provides better ways. The easiest way is simply to create a separate class for each collection of global variables
to be grouped, and to declare these variables as static members of the class. The static keyword ensures that no matter
how many instances of the class exist, the variables will all share the same address space — which means there is
effectively only one instance of each variable in the class.

A more clever approach is known as the Singleton pattern, a technique which ensures that one — and only one —
instance of a class can be created. Each desired collection of variables can be declared in its own Singleton class. Here
is an example of these strategies (please see "Interfaces: Where Scientific Bakers Bake their Pi!").

http://www.earthweb.com/dlink.resource-jhtml.72.1395.%7Crepository%7C%7Csoftwaredev%7Ccontent%7Carticle%7C2000%7C06%7C19%7CSDdejongsingl%7CSDdejongsingl~xml.0.jhtml?cda=true

Interfaces: Where Scientific Bakers Bake their Pi!

One advantage of global variables stored in classes is that, to use these
variables, their names must contain the class instance in which they appear
(gt.x vs. x) - perhaps awkward at first but ultimately a much-needed
bookkeeping mechanism.

But for scientific constants which never change, such as pi (3.141...) or e
(2.718...), it is useful to define them in an interface which can be implemented
by classes which need them. In fact for scientists usually this is not enough:
they want to store all variations (such as pi/2, 2*pi, pi*pi, etc.) which might
show up in formulas. The advantage of interfaces is that such constants need to
be typed in one time only - thereafter, it's easy to recycle the interface in many
different programs!

Scientists Like to Think Global

Java offers advantages over traditional Fortran 77 for storing and managing
global variables in scientific programs. By defining, dimensioning and storing
variables in a class, the need for repetitive declarations in each subroutine is
eliminated!

Here's an example program, GlobalVariableTest.java, which demonstrates
both static and Singleton-style global variables:

public class GlobalVariableTest {
 public static void main (String args[]) {
 GlobalVariableTest.init();
 GlobalVariableTest.calc();
 }
 public static void init() {
 GlobalSingletonTest gt = GlobalSingletonTest.getInstance();
 gt.x = 1.0;
 GlobalStaticTest gst = new GlobalStaticTest();
 gst.y = 2.0;
 System.out.println("X,Y: "+gt.x+", "+gst.y);
 }
 public static void calc() {
 GlobalSingletonTest gt = GlobalSingletonTest.getInstance();
 GlobalStaticTest gst = new GlobalStaticTest();
 System.out.println("X,Y: "+gt.x+", "+gst.y);
 }
}

Here's the accompanying file, GlobalSingletonTest.java, defining global
variables using the Singleton class:

/** Demonstrates Singleton-style global variables */
public class GlobalSingletonTest {
 /** Manages SingletonClass */
 private GlobalSingletonTest() {}
 static private GlobalSingletonTest _instance;
 static public GlobalSingletonTest getInstance() {
 if (_instance == null)
 _instance = new GlobalSingletonTest();
 return _instance;
 }
 // List of global variables
 public double x;
}

And here's the accompanying file, GlobalStaticTest.java, defining the
global variables using static members:

/** Global variables via static members */
public class GlobalStaticTest {
 // List of global variables
 static public double y;
}

Better for Scientific Programs: Public Access not Accessor Methods

In these examples, the programmer handles global variables directly (e.g.,
gt.x = 1.0;) rather than by using methods (e.g., gt.setX(1.0)). This latter
approach is not always optimal in a scientific program which contains dozens
of variables which appear in complicated equations! But scientists take note:
methods are a useful programming tool to make it obvious when setting or
changing important control variables!

— K. R.

A useful convention is to preface the name of such global variables classes with the word Global, as in GlobalEnergy
or GlobalMaterial. This not only describes the class, but also ensures that all these classes will be grouped together
in any javadoc HTML files which are produced.

Design Patterns for Scientific Programs

Modern programming languages are like children's Lego-type block toys, comprising myriads of small components
which can build structures of great complexity. There are a few basic substructures used frequently, such as boxes to
build houses or chassis to build cars. By clearly defining these structures, known as design patterns, and by recycling
them in programs, the programmer can quickly assemble elegant programs of great complexity. The Singleton pattern
for global variables is one such design pattern.

Here we present three design patterns which are useful for scientific programming in Java.

The DataTransceiver Pattern

As the sidebar on antimatter illustrates, some number-crunching programs take hours or even days to run. What
happens when, ten minutes before such a program is finished executing, the system crashes or the computer is
accidentally switched off? Such problems are not just frustrating, they are also expensive. The scientist's time costs
money, and on supercomputers each CPU second may recorded and billed.

When Matter and Antimatter
Collide

http://www.earthweb.com/dlink.resource-jhtml.72.1395.%7Crepository%7C%7Ccommon%7Ccontent%7Carticle%7C19991111%7Cgm_patternsdv%7Cpatternsdv~xml.0.jhtml?pageNo=2&cda=true

Any Star Trek fan knows what
happens when matter and
antimatter collide: annihilation!
But fortunately for us, the
annihilation is not total -- the
only thing to annihilate are the
miniscule bits of matter and
antimatter which have collided.
The equally-miniscule light
waves emitted during
annihilation can be measured
easily, and they make a
sensitive fingerprint of the
matter that's been annihilated.
Medical diagnostic techniques
called PET scans are based on
this process, and they help save
countless lives every year.

Prof. Kelvin Lynn and Dr. Marc
Weber are two physicists at
Washington State University
who work at the forefront of
antimatter annihilation
technology. They build
complicated machines, such as
the one shown above, which
use precisely-controlled beams
of antimatter (called positrons)
to study new materials and new
electronic devices. But to
interpret their results, they often
need to compare their data with
the results of computer
simulations.

These so-called Monte Carlo
computer programs use
probability theory to simulate
the complicated scattering
processes which occur just
before annihilation, as the
antimatter beam enters the
material and is randomly

http://pet.radiology.uiowa.edu/
http://www.wsu.edu/NIS/releases3/skh117.htm

scattered by the atoms. These
calculations predict what
happens by simulating and
averaging thousands and
thousands of discrete scattering
events. Even on the fastest
computers, the calculations may
take hours or even days,
depending on the level of
accuracy that the researchers
need.

Some of Dr. Lynn's programs
use the DataTransceiver design
pattern (see separate sidebar
below). As the program runs,
the results of the simulation are
periodically written to ASCII
files. This strategy allows the
programs to be stopped at any
time to look at the intermediate
results, and to be restarted again
when more accuracy is needed.
Computer time is not free,
especially on high-speed
supercomputers, so this strategy
also helps save money and
protect the results in case of a
computer crash.

— K. R.

The DataTransceiver pattern is a solution to this problem. Like a radio transceiver, which both transmits and receives,
the DataTransceiver pattern regularly reads and writes all the essential information for a calculation to data files. It
allows the calculation to be interrupted at any time, either accidentally (such as a system crash), or intentionally (such
as to check the intermediate results) — and then to be restarted again.

And by giving a little thought to the data files which are produced, interspersing them liberally with variable
descriptions and user-comments, they make a useful archival record which stores the calculation results together with
the initial parameters used to generate them.

The DataTransceiver Design
Pattern

The Problem

A numerical calculation without
user interaction requires lengthy
execution time, perhaps hours
or even days. If the computer
system crashes considerable
time and resources will be lost.
The user may periodically wish
to interrupt the calculation, to
verify the intermediate results.

The Solution

At periodic times the
calculation is halted and such
intermediate results as are
required to restart the
calculation are written to
datafiles.

Implementation Details

A single class can be used to
perform both the data input and
the data output operations.

Advantages

By use of a single class
for input and output, the
programmer is
automatically reminded
that any new variables
introduced into the
calculation during
program development
must be both initialized
and as well as saved.
By appropriately
labelling the output
variables in the data file,
and by providing space in
the data file for user-
written commentary, the
data file makes a useful
archival record which can
store the results of the
calculation together with
the parameters used to
generate them.
By creating a sequence of
temporary data files,
rather than a single data
file which is continually
overwritten, the
programmer obtains a
record of results during
intermediate stages in the
calculation.

Disadvantages

Depending on the calculation
(e.g., one involving dozens of
large, multidimensional arrays),
intermediate data files may be

large and unwieldly.

Responsibilities for the
Programmer

1. Ensure the library
methods are functionally
independent.

2. Try to use static methods
whenever possible.

Example

The DataTransceiver design
pattern is implemented in many
scientific calculations, although
scientists may not call it by this
name! A good reference to
some publications about
programs which use this pattern
is the 1993 journal article in the
Journal of Applied Physics,
volume 74, pages 3479-3496
(1993).

The scientific programmer will
often not know ahead of time
how many iterations are
required to obtain an accurate
answer. The DataTransceiver
pattern lets the scientist start
and stop the calculation as often
as necessary to obtain the
desired accuracy.

— K. R.

The ScientificLibrary Pattern

We've said in Part 2 that numerical methods are the heart and soul of scientific programs, and that many scientific
programs are nothing but well-tested legacy methods patched together in new ways. So there must be good techniques
for archiving and maintaining these methods.

The ScientificLibrary pattern provides a good technique. A scientific library is a class which contains numerous
independent, static public methods and internal classes, with no global variables. Every scientific programmer has a
favorite collection of tools which he/she reuses often, such as for solving an equation, calculating a histogram, writing
data to an ASCII file, etc. A scientific library is the ideal repository for these methods. Declaring the methods as static
is the ultimate in programmer-friendly strategy: the methods can be used without needing to instantiate the class!

The ScientificLibrary Design
Pattern

The Problem

A scientist needs to have easy
access to a collection of many
small, functionally independent
numerical methods. These may
be favorite methods the
scientist uses often, such as for
solving an equation, making
histograms or writing columns
of data to ASCII files.

The Solution

A class is used as a repository
for a "library" of recyclable,
interdependent methods.

Implementation Details

The methods are declared as
static whenever possible, so
they can be used without the
need for class instantiation.

Advantages

Speeds program
development by keeping
often-used methods at
fingertip distance.
Results in cleaner source
code, especially for
programs which may use
dozens of "library style"
numerical methods.
Easy to modify and
maintain — new methods
are simply appended to
the class.
HTML documentation
(javadoc) is clean and
adequately describes
method usage.
Because Java allows
defining multiple
methods with different
parameter lists, the
library can easily contain
several often-used
versions of numerical
methods.

Disadvantages

Not well-suited for
interdependent methods.

Responsibilities for the
Programmer

The programmer must
analyze a calculation for
appropriate breakpoints
for writing data files.
The programmer must
implement a calculation
in such a way that it can
be restarted using
parameters read from a
data file.
The programmer must
ensure the
DataTransceiver class has
access to the appropriate
variables. This may
require the use of global
variable techniques such
as Singleton classes.

Example

There are several useful
ScientificLibrary classes in
DataScan, a Java-based
software application for data
analysis in x-ray diffraction and
microscopy experiments.

— K. R.

As with global variable classes described above, a useful convention is to name the scientific library classes with the
word Utils, as in UtilsMath or UtilsFile. This not only describes the class, but also ensures that all these classes
will be grouped together in any javadoc HTML files which are produced.

The NoOOP Pattern

For simple scientific programs, such as a calculation requiring little user interaction, the NoOOP pattern (pronounced
nope) can be useful. It's a way to implement a Fortran-like procedural program. It may contain methods to initialize
the starting data, methods to perform the calculation, and methods to output the results.

This pattern is not the optimal use of Java's powerful OOP resources, as the name cleverly suggests. But traditional
(non-scientific) software developers should take note: a scientific programmer may have years of successful software
design experience, though none of it object-oriented. The NoOOP pattern provides a perfect place for a scientist to
begin with Java.

The NoOOP Design Pattern

The Problem

A scientist — possibly a scientist new to Java and without experience with classes and inheritance and other OOP
techniques — needs to quickly write a short program, perhaps to evaluate an equation.

http://dxray.mpi-stuttgart.mpg.de/dosch/software/Ken/DataScan/DataScan.htm

The Solution

A Fortran- or C-style procedural program can be easily developed using Java.

Implementation Details

A single class can contain all variables and methods to perform all required tasks.

Advantages

Extremely quick program development for simple, procedural programs.
Only superficial, not detailed (esp. OOP) knowledge of Java is required.

Disadvantages

Not well-suited for longer programs with many methods or global variables.
Difficult to modify and maintain.

Responsibilities for the Programmer

Must be prepared to completely redesign the program when the calculation outgrows the procedural
framework

Example

This example shows a simple procedural program to find when a user-specified function is equal to zero. For this
example, the function is the sine of x (sin(x)), and useful "test" parameters are 0.1, 5, and 1e-7. If the program runs
correctly, it will report that the function is zero for the value 3.1415 ...

Some Java features this program demonstrates:

Since the main method is static, it is especially useful to invoke or encapsulate the procedural program within
a different method, to simplify how the methods are invoked.
How to perform basic input and output from the console.

public class Procedural {

 // This function just starts the program
 public static void main(String[] args) {
 Procedural myproc = new Procedural();
 }

 // The main procedural program goes here
 public Procedural() {
 double d, dStart, dStop, dStepSize;
 dStart = getDoubleInput("Enter startpoint: ");
 dStop = getDoubleInput("Enter endpoint: ");
 dStepSize = getDoubleInput("Enter stepsize: ");
 for (d=dStart; d<dStop; d+=dStepSize) {
 if (myFunction(d)*myFunction(d+dStepSize) < 0) break;
 }
 if (d>dStop) System.out.println("No zero found. ");
 else System.out.println("The function is zero when x = " + d);
 }

 // Example of how to read double numbers from the keyboard
 double getDoubleInput(String sMessage) {
 double d = 0.0;
 System.out.print(sMessage);
 try {

 d = Double.valueOf(new java.io.DataInputStream(System.in).readLine()).doubleValue();
 } catch (java.io.IOException e) {}
 return d;
 }

 // Example of a user-defined function
 double myFunction (double x) {
 return Math.sin(x);
 }

}

— K. R.

Scientific Programming for the 21st Century

There's good reason for Java's explosive popularity: it gives business programmers the tools they need to write
effective, easy-to-maintain programs. But as we've discussed, Java offers excellent tools for scientific programmers as
well. Scientists switching to Java will be rewarded with fast-running, platform-independent programs — which are far
easier to modify and maintain than their Fortran or C counterparts!

About the Author

Dr. Kenneth A. Ritley is a consultant with HP Consulting in Sindelfingen, Germany. Until recently, he was a physicist
in Department Dosch at the Max-Planck-Institut für Metallforschung (Metals Research) in Stuttgart, Germany. He's
made scientific computing contributions in the wide-ranging fields of astronomy, antimatter, high-temperature
superconductivity, and magnetism.

mailto:kenritley@hotmail.com
http://wwwmf.mpi-stuttgart.mpg.de/abteilungen/dosch/dosch.html
http://www.mpi-stuttgart.mpg.de/

