
This article was published in 2000, in Gamelan

Java as a Scientific Programming Language (Part 1)
By Ken Ritley

We live in a technological world, at the heart of which are scientists and engineers. They need programming
tools to help make important discoveries and bring the next generation of technology to market.

In this article, we'll discuss what scientific programs are and whether Java is suited for the high-performance,
numerically intensive applications which technical applications demand — in short, whether Java has a future
for scientific computing. We'll also provide a list of resources for scientists new to the Java language. In Part
2, we'll examine the structure of a typical scientific program more closely, and we'll give you a short "style
guide" that can help scientists write good Java programs.

The Programs Scientists Use

When the author developed scientific programs as a physics undergraduate in the early 1980s, there was only
one type of scientific program: the type you wrote yourself, in Fortran, for large multi-user mainframe
systems.

Types of Scientific Programs

Commercial scientific applications accomplish
some specific task, such as image processing,
the analysis of electronic circuits, the
simulation of load-bearing structures for
mechanical engineering, and so forth. These
are usually complete with fancy graphics and
GUIs — and cost hundreds to thousands of
dollars.

Scientific programming environments, such as
Mathematica, PV-Wave, MathCad, Origin and

http://www.internet.com/
mailto:feedback@internet.com
http://www.wolfram.com/
http://www.vni.com/index.html
http://www.mathsoft.com/
http://www.microcal.com/

Igor Pro, are perfect examples. Similar to the
traditional programming IDEs that
programmers know and love, these are what
scientists and engineers use for their daily
work. Some type of procedural programming
language (similar to Fortran) is bundled with a
user-friendly GUI and packaged with copious
scientific tools for solving equations, plotting
data, dealing with huge arrays of numbers,
performing simulations, and so on. It's here
that scientists can quickly test a new idea,
develop a scientific model and see if it agrees
with experimental data, or devise a new type
of data analysis, for example.

Traditional programming languages such as
Fortran and C still play a vital role in scientific
research, partly because they are optimized for
high-performance (many of the most
important calculations take hours or days to
run!) but mostly because it's too expensive to
abandon the extant "legacy" code, literally
thousands of Fortran and C programs written,
debugged, tested, and re-tested over the
decades. It's hard to believe, but many of the
cutting-edge programs from the 1970s are still
the scientific work-horses of today.

— K. R.

Today, the mainframe has largely been replaced by high-performance workstations and PCs, and there are
roughly three categories of scientific programs: high-cost commercial scientific applications, which
accomplish a specific scientific task; scientific programming environments, similar to programming IDEs but
with data analysis features scientists need; and traditional programming languages, such as Fortran or C, with
which scientists can write their own programs (see the sidebar "Types of Scientific Programs"). It's mainly
programs in this latter category that are good candidates for Java (see the sidebar "To GUI or Not to GUI").

What Can Java Do for Scientists?

Java is the ideal language for developing business applications because it includes all the tools programmers
need, from low-level tools such as hashtables and linked lists, to high-level ones for network security and
CORBA. For scientific computing, the case for Java is not so clear.

Java offers both advantages and disadvantages for scientific programming. For the scientist thinking about
making the move to Java, it's essential to evaluate these areas carefully. (For the non-scientific programmer, it
should be instructive, as well.)

To OOP, or not to OOP

It's been argued that objected-oriented programming has been so successful because the world is made up of
objects, and the purpose of programs is to describe them. It's an interesting argument, which doesn't always

http://www.wavemetrics.com/

apply to scientific programming. An object-oriented program might be the natural way to deal with airplanes,
for example: airplanes have interfaces to connect them with other aircraft (refueling airplanes), they have
properties (number of engines), and they have methods (how to take off and land).

In contrast, a scientist is chiefly concerned with pure numbers, such as energy or mass or the velocity of light.
The idea is to start with a small collection of numbers, to perform a sequence of distinct, functionally
independent mathematical-operations (say, E=mc2), and then to end up with a new set of numbers. The heart
and soul of the scientific program lie in mathematical operations.

Java imposes a great deal of object-oriented infrastructure on the programmer, even when it's not needed and
not natural for solving a programming problem. Fortunately, there's no need for the scientist to become an
OOP specialist — there are good ways to cheat and avoid the mess! Java provides all the tools necessary for
writing procedural (not object-oriented) programs. In Part 2 of this article, we'll offer some tips for creating
creating global variables, managing libraries of pre-written procedures, and show how everything labeled
"static" (methods and variables) can be a scientist's best friend [see Global Variables in Java with the
Singleton Pattern

].

To GUI or Not to GUI

The world of scientific programming has a
Twilight Zone between two extremes: On the
one hand, there are programs that take days to
execute; clearly, for such programs a GUI is
meaningless. On the other hand, there are

http://dev-gamelan.earthweb.com/journal/techfocus/022300_singleton.html
http://www.developer.com/article/1,,626151,00.html

programs that run quickly; clearly, for these a
good GUI is essential.

The boundary between the two worlds is
continually moving as the speed of computers
increases. Scientific calculations for which a
GUI seems unthinkable today will
undoubtedly require a GUI tomorrow.

This is where Java can make an important
contribution. Java has built-in cross-platform
capabilities for GUIs. By implementing new
calculations in Java, scientists can ensure that
the cutting-edge programs of today will
become the daily work-horses of tomorrow.

— K. R.

"Legacy" Code

It's a derogatory term. It conjures notions of dusty boxes filled with punch cards of Fortran GOTOs and
Hollerith constants, and mile-high stacks of fan-fold compiler listings!

As we've said, the heart and soul of the scientific program lie in mathematical operations. A scientist may
spend months or years devising and testing purely mathematical numerical methods (which scientists still call
subroutines). And when it's been proven that a subroutine works, it can be published in a "library",
facilitating its shared use between scientists. These libraries are fundamental to the progress of science: like
libraries of books, they allow scientists to use the hard work and good ideas of generations of scientists
before them. In fact, many scientific programs are nothing more than collections of legacy subroutines
patched together in new ways.

Regarding legacy code and Java, the news is all bad. Java was born in Silicon Valley in 1995. It is a new
programming language, and therefore there are few software libraries, at least few in comparison with the
massive libraries for Fortran and C. It is not just frustrating — it can stop a scientific project dead in its tracks
(see the sidebar "Scientific Resources in Java").

And the bad news gets even worse! From the scientific standpoint, Java is so different from Fortran and C,
conversion of legacy code in Java by hand may be impossible. Java is quite accommodating of Fortran's array
syntax and adjustable-dimension arrays, but Java doesn't support a complex number type, as will be discussed
in Part 2. And although Java syntax is similar to C, the elimination of pointer arithmetic means any
subroutine involving arrays and matrices — this has been called the "bread-and-butter" of scientific
programming! — may not be portable to Java. To make matters worse, Java does not support unconditional
branching (GOTO), a feature very heavily implemented in legacy Fortran code.

Scientific Resources in Java

Scientific Resources in Java

A large fraction of scientific programs are patchwork
creations. They may tie together dozens of library
subroutines, pre-written methods that have been

http://www.netlib.org/

tested, tested, and re-tested.

So the ability to put together a scientific program
depends crucially on the available libraries.

Scientific Libraries

The list of scientific libraries in Java is small but
growing. Instead of trying to list them all, here is a
meta-list of other lists which scientific programmers
may find useful.

NETLIB: A central resource for mathematical
computing
http://www.netlib.org/

Java Resources for Science and Engineering
http://www.npac.syr.edu/projects/tutorials/JavaCSE/

Colt: Open Source Libraries for High Performance
Scientific and Technical Computing
http://tilde-
hoschek.home.cern.ch/~hoschek/colt/index.htm

Java Numerics
http://math.nist.gov/javanumerics/

Java Classes for Operations Research
http://OpsResearch.com/OR-Objects/index.html

Java Numerical Toolkit
http://math.nist.gov/jnt/

Parallel Compiler Run-Time Consortium
http://www.npac.syr.edu/projects/pcrc/

Java Grande Forum
http://www.javagrande.org/

Titanium: A Dialect of Java for Large-Scale
Scientific Computing
http://HTTP.CS.Berkeley.EDU/projects/titanium/

Java Access to Numerical Libraries
http://www.cs.utk.edu/f2j/hpjhtml/

JIGL: Java Image and Graphics Library
http://rivit.cs.byu.edu/jigl/

Image/J - Platform-independent Scientific Image
Processing Package

http://www.netlib.org/
http://www.npac.syr.edu/projects/tutorials/JavaCSE/
http://tilde-hoschek.home.cern.ch/~hoschek/colt/index.htm
http://math.nist.gov/javanumerics/
http://opsresearch.com/OR-Objects/index.html
http://math.nist.gov/jnt/
http://www.npac.syr.edu/projects/pcrc/
http://www.javagrande.org/
http://http.cs.berkeley.edu/projects/titanium/
http://www.cs.utk.edu/f2j/hpjhtml/
http://rivit.cs.byu.edu/jigl/

http://rsb.info.nih.gov/ij/

Image Processing Package in Java
http://www.ctr.columbia.edu/~dzhong/JIM/JIM.html

Educational Applets

The scientific educational community has jumped on
Java applets — they're a terrific way to implement
"virtual" scientific demonstrations. As a
consequence, the next generation of scientists may be
more versed with Java than with traditional scientific
langauges such as Fortran or C!

For scientific programmers, such Java applets have
something to offer, too. Many of them have well-
designed user-interfaces, fancy graphics and
scientific plots — all of which can be "borrowed" for
use in your own programs.

This is by no means a complete list, but it's definitely
worth a look.

Physics Education R&D at North Carolina State
University at Raleigh
http://sb-dell.physics.ncsu.edu/Java/
http://www.physics.ncsu.edu:8380/physics_ed/

Physlets at Davidson College
http://webphysics.davidson.edu/Applets/Applets.html

Physics Illuminations at the University of New
Orleans
http://www.uno.edu/~rgreene/illum.html

The Optics Project at Mississippi State University
http://www.uno.edu/~rgreene/illum.html

Physics 2000 at the University of Colorado at
Boulder
http://www.Colorado.EDU/physics/2000/index.pl

Project Links at Rensselaer Polytechnic Institute
http://links.math.rpi.edu/index.html

Soda Constructor
http://sodaplay.com/constructor/index.htm

— K. R.

http://rsb.info.nih.gov/ij/
http://www.ctr.columbia.edu/~dzhong/JIM/JIM.html
http://sb-dell.physics.ncsu.edu/Java/
http://www.physics.ncsu.edu:8380/physics_ed/
http://webphysics.davidson.edu/Applets/Applets.html
http://www.uno.edu/~rgreene/illum.html
http://www.uno.edu/~rgreene/illum.html
http://www.colorado.edu/physics/2000/index.pl
http://links.math.rpi.edu/index.html
http://sodaplay.com/constructor/index.htm

For translating between other languages, translation programs (such as f2c) have often helped. These
differences between Java and Fortran/C are so significant, however, a translation program may be effectively
impossible to write. Interestingly enough, there are projects underway (f2j) to convert Fortran source code
directly to Java bytecode, as well as to make other numerical libraries Java-accessible (NetSolve). For
scientific programmers, these are vital steps in the right direction!

Memory

Like legacy code, memory and storage space is a particularly dangerous area, which requires careful
deliberation before deciding to implement a scientific program in Java.

In C and Fortran 90, new memory for variables can be allocated, and memory for variables no longer in use
can be deallocated. Memory allocation in Java is generally no problem; you can
catch

allocation errors and have your program respond appropriately if there's not enough memory when you need
it.

Deallocation is trickier. Java memory deallocation is handled by the so-called garbage collector, a process
that runs in parallel to your program that releases memory for objects which are no longer referenced [please
see Understanding Automatic Garbage Collection

]. You can start a garbage collection thread, but you can't control it, and you can't easily know when the
memory you've released is ready for use again.

There are tricks to beat the problem, once you're aware it exists. But you still need to be cautious — just
because you think your variables are dereferenced, they may not be, creating a nasty "memory leak" that
garbage collection can't fix.

Speed

Memory allocation and legacy code issues are good reasons for a scientist to think twice about using Java,
but execution speed isn't one of them.

Speed is a black-and-white issue. There are applications in which speed is so important that the scientist
works exclusively with optimized compilers on supercomputers — and must also spend time on program
optimization, usually with the help of special "optimizers" that rewrite the code to eliminate every wasted
nanosecond. These are the calculations that take days to run — and sometimes take days before confirming
the "garbage in, garbage out" principle because of a typing mistake! Such programs are very bad candidates
for Java.

Any program not in this category is a good candidate for Java. With earlier versions of Java, speed was a
signficant issue. But as recent scientific benchmarks, including SciMark, and other benchmarks demonstrate,
execution speed on a modern PC should be suitable for all non-supercomputer-based applications. And
because the speed of computers seems to be increasing on a monthly basis, even without optimization, a
marginal program today will execute just fine on a new computer next year!

Additional Factors to Consider

For scientists, learning Java and learning to think scientifically in Java may not be an easy step. Here is some
additional commentary on the following issues, all of them important for scientists [Java as a Scientific
Programming Language (Part 1): More Issues for Scientific Programming in Java

http://www.netlib.org/f2c/
http://www.cs.utk.edu/f2j/
http://www.cs.utk.edu/f2j/hpjhtml/
http://dev-gamelan.earthweb.com/journal/techfocus/070700_garbagecoll.html
http://www.developer.com/article/1,,628881,00.html
http://www.ncsa.uiuc.edu/
http://www.fortran.com/fortran/FAQ/gene.html
http://math.nist.gov/javanumerics/
http://math.nist.gov/scimark2/
http://davinci.snu.ac.kr/~buming/javaBench.html
http://www.cs.cmu.edu/~jch/java/optimization.html
http://www.developer.com/article/1,,631201,00.html

].

Complex Variables
Numerical Precision
Hardware Independence
IDEs and GUIs

And in Part 2 of this article, we'll offer concrete examples about how to write good scientific programs in
Java.

The Future of Java for Scientific Programming

Despite some disadvantages, the future of Java as a scientific programming language looks bright. For those
thinking about migrating to Java, there's some very good news on the horizon.

Scientific Libraries

The benefits of Java for scientific programming have impressed many people, and a few high-quality
scientific libraries are available. Still others are under construction. (See the sidebar "Scientific Resoureces in
Java".) Interestingly, using such libraries is far easier than in Fortran or C. Java provides good mechanisms
for importing and managing external libraries (or packages). And there are standardized programs (javadoc)
that create HTML documents which describe the library contents and their use.

Distributed Scientific Computing

The built-in threads, networking and client-server features of Java appeal to many scientists at the cutting
edge of scientific computing. Such features are lacking in Fortran and C, but these are exactly the tools
scientists need to write distributed applications, which subdivide a problem and harness the power of many
independent computers to solve it. Known as Grande Applications, these are defined as applications "of
large-scale nature, potentially requiring any combination of computers, networks, I/O, and memory", and the
Java Grande group is a consortium of scientists and programmers working to explore how Java can best be
used for such tasks.

Scientific Applets, for both Learning and Research

Applets are ultra-portable Java programs that can be sent over a network and run on a local host, usually by
means of a Web browser. Scientific applets for teaching have exploded in popularity, and there are dedicated
research groups that specialize in developing Java applets for scientific education. A byproduct of this effort
means the next generation of scientists may be more fluent with Java than Fortran or C!

But applets aren't just for teaching purposes. They can be useful for scientific research, particularly when a
large number of scientists need to share the same analysis tools. NASA, some physics researchers, and even
vendors of commercial scientific software are getting into the act.

So ... if you are a scientist thinking about using the language that's revolutionized modern programming, now
is the perfect time to start! And in Part 2, we'll give you some tips and tricks for helping you to write high-
quality scientific programs.

About the Author

Dr. Kenneth A. Ritley is a consultant with HP Consulting in Sindelfingen, Germany. Until recently, he was a

http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
http://www.javagrande.org/Charter.html
http://www.javagrande.org/pastglory/index.html
http://sb-dell.physics.ncsu.edu/Java/
http://spaceflight.nasa.gov/realdata/sightings/index.html
http://musr.physics.ubc.ca/
http://www.vni.com/index.html
mailto:kenritley@hotmail.com

physicist in Department Dosch at the Max-Planck-Institut für Metallforschung (Metals Research) in
Stuttgart, Germany. He's made scientific computing contributions in the wide-ranging fields of astronomy,
antimatter, high-temperature superconductivity, and magnetism.

http://wwwmf.mpi-stuttgart.mpg.de/abteilungen/dosch/dosch.html
http://www.mpi-stuttgart.mpg.de/

